On the hypergeometric function and families of holomorphic functions (2024)

Mark ElinM. Elin: Department of Mathematics, Braude College of Engeneering, Karmiel 21982, Israel.mark_elin@braude.ac.ilandFiana JacobzonF. Jacobzon: Department of Mathematics, Braude College of Engeneering, Karmiel 21982, Israel.fiana@braude.ac.il

(Date: June 4, 2024)

Abstract.

In this work, we examine one two-parameter family of sets consisting of functions holomorphic in the unit disk, previously investigated by several mathematicians. We focus on the set-theoretic properties of this family, identify the general form of filtrations within it, and discover that it is not a lattice. This insight motivates us to introduce a refined concept of quasi-infima and quasi-suprema, and to establish their complete description.

Unexpectedly, some new properties of the GauรŸ hypergeometric function play a crucial role in our investigation.

Key words and phrases:

hypergeometric function; filtration; lattice; quasi-extremum

2020 Mathematics Subject Classification:

Primary 30C55; Secondary 33C05

1. Introduction

The paper explores sets ๐”„stsuperscriptsubscript๐”„๐‘ ๐‘ก\mathfrak{A}_{s}^{t}fraktur_A start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT of functions that are holomorphic in the open unit disk ๐”ป๐”ป\mathbb{D}blackboard_D, normalized by fโข(0)=fโ€ฒโข(0)โˆ’1=0๐‘“0superscript๐‘“โ€ฒ010f(0)=f^{\prime}(0)-1=0italic_f ( 0 ) = italic_f start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT ( 0 ) - 1 = 0 and satisfy the inequality

Re[(sโˆ’1)โขfโข(z)z+fโ€ฒโข(z)]โ‰ฅsโขt,zโˆˆ๐”ปโˆ–{0},formulae-sequenceRedelimited-[]๐‘ 1๐‘“๐‘ง๐‘งsuperscript๐‘“โ€ฒ๐‘ง๐‘ ๐‘ก๐‘ง๐”ป0\mathop{\rm Re}\nolimits\left[(s-1)\frac{f(z)}{z}+f^{\prime}(z)\right]\geq st,%\ z\in\mathbb{D}\setminus\{0\},roman_Re [ ( italic_s - 1 ) divide start_ARG italic_f ( italic_z ) end_ARG start_ARG italic_z end_ARG + italic_f start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT ( italic_z ) ] โ‰ฅ italic_s italic_t , italic_z โˆˆ blackboard_D โˆ– { 0 } ,

where s>0๐‘ 0s>0italic_s > 0 and 0โ‰ฅt<10๐‘ก10\geq t<10 โ‰ฅ italic_t < 1. In addition to intrinsic interest, these sets appeared in the investigation of extreme points of classes of univalent functions in[8], in a relation to certain integral transforms, see[11], as well as in the study of infinitesimal generators of semigroups in[4]. For more results on different families of holomorphic functions the reader can consult the book [7]. Here we are interested in the set-theoretic structure of the family ๐”„:={๐”„st}assign๐”„superscriptsubscript๐”„๐‘ ๐‘ก\mathfrak{A}:=\left\{\mathfrak{A}_{s}^{t}\right\}fraktur_A := { fraktur_A start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT }.

It appears that to investigate certain set-theoretic properties, a prerequisite understanding of GauรŸ hypergeometric functions is necessary. In this connection, it should be noted that in recent decades many authors have studied geometric properties of hypergeometric functions (see, for example, [1, 13, 15]). New results regarding sums of products and ratio of hypergeometric functions were established in [3, 10]. In [12], the zero-balanced hypergeometric function F12โข(1,s;s+1;z)subscriptsubscript๐น121๐‘ ๐‘ 1๐‘ง{{}_{2}F_{1}}(1,s;s+1;z)start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT italic_F start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( 1 , italic_s ; italic_s + 1 ; italic_z ) was applied to establishing new conditions for univalence and starlikeness of certain transforms.

Section2 considers a zero-balanced hypergeometric function F12โข(1,s;s+1;z)subscriptsubscript๐น121๐‘ ๐‘ 1๐‘ง{{}_{2}F_{1}}(1,s;s+1;z)start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT italic_F start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( 1 , italic_s ; italic_s + 1 ; italic_z ). We discover its subtle characteristics as a function of s๐‘ sitalic_s. In the subsequent sections, we elaborate on an approach that capitalizes on the dependence of the hypergeometric function F12โข(1,s;s+1;z)subscriptsubscript๐น121๐‘ ๐‘ 1๐‘ง{{}_{2}F_{1}}(1,s;s+1;z)start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT italic_F start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( 1 , italic_s ; italic_s + 1 ; italic_z ) on its parameter.

In Section3, we concentrate on the two-parameter family ๐”„๐”„\mathfrak{A}fraktur_A which is the main object of the study in this paper. Conditions that entail/exclude the inclusion of two elements of this family into one another are derived.

The results on the inclusion relation are applied in Section4 to answer our main questions. The first one is

โˆ™โˆ™\bulletโˆ™ How to characterize all filtrations included in this family? Recall that a one-parameter family of sets {๐”‰t}subscript๐”‰๐‘ก\left\{\mathfrak{F}_{t}\right\}{ fraktur_F start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT } is a filtration (see, for example, [2, 4, 6]) if it is ordered, more precisely, ๐”‰sโŠ‚๐”‰tsubscript๐”‰๐‘ subscript๐”‰๐‘ก\mathfrak{F}_{s}\subset\mathfrak{F}_{t}fraktur_F start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT โŠ‚ fraktur_F start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT whenever s<t๐‘ ๐‘กs<titalic_s < italic_t.

This problem is partially addressed in [4]. In Theorem4.2 we give the complete answer.

Another question is

โˆ™โˆ™\bulletโˆ™ Is the whole family a lattice? Recall that a partially ordered family ๐”Š={๐”Šฮฑ}๐”Šsubscript๐”Š๐›ผ\mathfrak{G}=\left\{\mathfrak{G}_{\alpha}\right\}fraktur_G = { fraktur_G start_POSTSUBSCRIPT italic_ฮฑ end_POSTSUBSCRIPT } endowed with the relation โŠ‚\subsetโŠ‚ islattice if each pair of elements has the unique supremum and the unique infimum.

By definition, the supremum of the pair ๐”Š1,๐”Š2โˆˆ๐”Šsubscript๐”Š1subscript๐”Š2๐”Š\mathfrak{G}_{1},\mathfrak{G}_{2}\in\mathfrak{G}fraktur_G start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , fraktur_G start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT โˆˆ fraktur_G (if it exists) is the element of ๐”Š๐”Š\mathfrak{G}fraktur_G denoted by sup(๐”Š1,๐”Š2)supremumsubscript๐”Š1subscript๐”Š2\sup(\mathfrak{G}_{1},\mathfrak{G}_{2})roman_sup ( fraktur_G start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , fraktur_G start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) such that ๐”Š1โˆช๐”Š2โŠ‚sup(๐”Š1,๐”Š2)subscript๐”Š1subscript๐”Š2supremumsubscript๐”Š1subscript๐”Š2\mathfrak{G}_{1}\cup\mathfrak{G}_{2}\subset\sup(\mathfrak{G}_{1},\mathfrak{G}_%{2})fraktur_G start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT โˆช fraktur_G start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT โŠ‚ roman_sup ( fraktur_G start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , fraktur_G start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) and if ๐”Š1โˆช๐”Š2โŠ‚๐”Šโˆ—subscript๐”Š1subscript๐”Š2subscript๐”Š\mathfrak{G}_{1}\cup\mathfrak{G}_{2}\subset\mathfrak{G}_{*}fraktur_G start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT โˆช fraktur_G start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT โŠ‚ fraktur_G start_POSTSUBSCRIPT โˆ— end_POSTSUBSCRIPT for some ๐”Šโˆ—โˆˆ๐”Šsubscript๐”Š๐”Š\mathfrak{G}_{*}\in\mathfrak{G}fraktur_G start_POSTSUBSCRIPT โˆ— end_POSTSUBSCRIPT โˆˆ fraktur_G, then sup(๐”Š1,๐”Š2)โŠ‚๐”Šโˆ—supremumsubscript๐”Š1subscript๐”Š2subscript๐”Š\sup(\mathfrak{G}_{1},\mathfrak{G}_{2})\subset\mathfrak{G}_{*}roman_sup ( fraktur_G start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , fraktur_G start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) โŠ‚ fraktur_G start_POSTSUBSCRIPT โˆ— end_POSTSUBSCRIPT. Analogously, the infimum is the element inf(๐”Š1,๐”Š2)infimumsubscript๐”Š1subscript๐”Š2\inf(\mathfrak{G}_{1},\mathfrak{G}_{2})roman_inf ( fraktur_G start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , fraktur_G start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) such that inf(๐”Š1,๐”Š2)โŠ‚๐”Š1โˆฉ๐”Š2infimumsubscript๐”Š1subscript๐”Š2subscript๐”Š1subscript๐”Š2\inf(\mathfrak{G}_{1},\mathfrak{G}_{2})\subset\mathfrak{G}_{1}\cap\mathfrak{G}%_{2}roman_inf ( fraktur_G start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , fraktur_G start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) โŠ‚ fraktur_G start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT โˆฉ fraktur_G start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT and the inclusion ๐”Šโˆ—โŠ‚๐”Š1โˆฉ๐”Š2subscript๐”Šsubscript๐”Š1subscript๐”Š2\mathfrak{G}_{*}\subset\mathfrak{G}_{1}\cap\mathfrak{G}_{2}fraktur_G start_POSTSUBSCRIPT โˆ— end_POSTSUBSCRIPT โŠ‚ fraktur_G start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT โˆฉ fraktur_G start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT implies ๐”Šโˆ—โŠ‚inf(๐”Š1,๐”Š2)subscript๐”Šinfimumsubscript๐”Š1subscript๐”Š2\mathfrak{G}_{*}\subset\inf(\mathfrak{G}_{1},\mathfrak{G}_{2})fraktur_G start_POSTSUBSCRIPT โˆ— end_POSTSUBSCRIPT โŠ‚ roman_inf ( fraktur_G start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , fraktur_G start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ).

Definition4.3 introduces refined concepts: sets of quasi-infima and quasi-suprema. We give the complete description of quasi-extrema for each pair of elements of ๐”„๐”„\mathfrak{A}fraktur_A in Theorem4.4.

Furthermore, the observation below shows that if a pair ๐”Š1,๐”Š2โˆˆ๐”Šsubscript๐”Š1subscript๐”Š2๐”Š\mathfrak{G}_{1},\mathfrak{G}_{2}\in\mathfrak{G}fraktur_G start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , fraktur_G start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT โˆˆ fraktur_G has a supremum, then the quasi-supremum coincides with the supremum and so is unique. Since, according to our results, it is not the case that for every pair of elements of ๐”„๐”„\mathfrak{A}fraktur_A there is a unque quasi-supremum, we conclude:

The family ๐”„={๐”„st}๐”„superscriptsubscript๐”„๐‘ ๐‘ก\mathfrak{A}=\left\{\mathfrak{A}_{s}^{t}\right\}fraktur_A = { fraktur_A start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT } is not a lattice.

In the last Section5, we pose several questions for a forthcoming investigation.

2. Some new properties of the hypergeometric function

To prove the main result of this section we need two auxiliary lemmata.

Lemma 2.1.

Let ฯˆ1subscript๐œ“1\psi_{1}italic_ฯˆ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and ฯˆ2subscript๐œ“2\psi_{2}italic_ฯˆ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT be continuous functions defined for x>0๐‘ฅ0x>0italic_x > 0 by the formulas

ฯˆ1โข(x):=2โข(1+x)x2โขlogโก(1+x24โข(1+x)),ฯˆ2โข(x):=2+x+(1+x)โขlogโก(1+x)(2+x)2formulae-sequenceassignsubscript๐œ“1๐‘ฅ21๐‘ฅsuperscript๐‘ฅ21superscript๐‘ฅ241๐‘ฅassignsubscript๐œ“2๐‘ฅ2๐‘ฅ1๐‘ฅ1๐‘ฅsuperscript2๐‘ฅ2\psi_{1}(x):=\frac{2(1+x)}{x^{2}}\,\log\left(1+\frac{x^{2}}{4(1+x)}\right),%\quad\psi_{2}(x):=\frac{2+x+(1+x)\log(1+x)}{(2+x)^{2}}italic_ฯˆ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_x ) := divide start_ARG 2 ( 1 + italic_x ) end_ARG start_ARG italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG roman_log ( 1 + divide start_ARG italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 4 ( 1 + italic_x ) end_ARG ) , italic_ฯˆ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_x ) := divide start_ARG 2 + italic_x + ( 1 + italic_x ) roman_log ( 1 + italic_x ) end_ARG start_ARG ( 2 + italic_x ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG

and ฯˆ1โข(0)=ฯˆ2โข(0)=12subscript๐œ“10subscript๐œ“2012\psi_{1}(0)=\psi_{2}(0)=\frac{1}{2}italic_ฯˆ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( 0 ) = italic_ฯˆ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( 0 ) = divide start_ARG 1 end_ARG start_ARG 2 end_ARG. Then the equation ฯˆ1โข(x)=ฯˆ2โข(x)subscript๐œ“1๐‘ฅsubscript๐œ“2๐‘ฅ\psi_{1}(x)=\psi_{2}(x)italic_ฯˆ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_x ) = italic_ฯˆ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_x ) has a unique solution in (0,โˆž)0(0,\infty)( 0 , โˆž ).

The proof of this lemma is very technical and long. For this reason, we present it in Appendix at the end of the paper.

The next assertion is a simple consequence of the theorem on integral average.

Lemma 2.2.

Let โˆ’โˆžโ‰คa<bโ‰คโˆž๐‘Ž๐‘-\infty\leq a<b\leq\infty- โˆž โ‰ค italic_a < italic_b โ‰ค โˆž and functions ฯ•,ฯˆโˆˆCโข(a,b)italic-ฯ•๐œ“๐ถ๐‘Ž๐‘\phi,\psi\in C(a,b)italic_ฯ• , italic_ฯˆ โˆˆ italic_C ( italic_a , italic_b ) satisfy

  • (i)

    ฯ•italic-ฯ•\phiitalic_ฯ• is bounded, positive and decreasing;

  • (ii)

    there is t0โˆˆ(a,b)subscript๐‘ก0๐‘Ž๐‘t_{0}\in(a,b)italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT โˆˆ ( italic_a , italic_b ) such that ฯˆโข(t)<0๐œ“๐‘ก0\psi(t)<0italic_ฯˆ ( italic_t ) < 0 as tโˆˆ(a,t0)๐‘ก๐‘Žsubscript๐‘ก0t\in(a,t_{0})italic_t โˆˆ ( italic_a , italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) and ฯˆโข(t)>0๐œ“๐‘ก0\psi(t)>0italic_ฯˆ ( italic_t ) > 0 as tโˆˆ(t0,b)๐‘กsubscript๐‘ก0๐‘t\in(t_{0},b)italic_t โˆˆ ( italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_b );

  • (iii)

    the improper integral โˆซabฯˆโข(t)โข๐‘‘tsuperscriptsubscript๐‘Ž๐‘๐œ“๐‘กdifferential-d๐‘ก\displaystyle\int_{a}^{b}\psi(t)dtโˆซ start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT italic_ฯˆ ( italic_t ) italic_d italic_t equals zero.

Then โˆซabฯ•โข(t)โขฯˆโข(t)โข๐‘‘t<0superscriptsubscript๐‘Ž๐‘italic-ฯ•๐‘ก๐œ“๐‘กdifferential-d๐‘ก0\int_{a}^{b}\phi(t)\psi(t)dt<0โˆซ start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT italic_ฯ• ( italic_t ) italic_ฯˆ ( italic_t ) italic_d italic_t < 0.

Proof.

Conditions (ii) and (iii) imply that โˆซt0bฯˆโข(t)โข๐‘‘t=โˆ’โˆซat0ฯˆโข(t)โข๐‘‘t>0.superscriptsubscriptsubscript๐‘ก0๐‘๐œ“๐‘กdifferential-d๐‘กsuperscriptsubscript๐‘Žsubscript๐‘ก0๐œ“๐‘กdifferential-d๐‘ก0\int_{t_{0}}^{b}\psi(t)dt=-\int_{a}^{t_{0}}\psi(t)dt>0.โˆซ start_POSTSUBSCRIPT italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT italic_ฯˆ ( italic_t ) italic_d italic_t = - โˆซ start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT italic_ฯˆ ( italic_t ) italic_d italic_t > 0 . Therefore for any t1โˆˆ(a,t0)subscript๐‘ก1๐‘Žsubscript๐‘ก0t_{1}\in(a,t_{0})italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT โˆˆ ( italic_a , italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) there is a unique t2โˆˆ(t0,b)subscript๐‘ก2subscript๐‘ก0๐‘t_{2}\in(t_{0},b)italic_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT โˆˆ ( italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_b ) such that

0<โˆซt0t2ฯˆ(t)dt=โˆ’โˆซt1t0ฯˆ(t)dt=:A(t1)0<\int_{t_{0}}^{t_{2}}\psi(t)dt=-\int_{t_{1}}^{t_{0}}\psi(t)dt=:A(t_{1})0 < โˆซ start_POSTSUBSCRIPT italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT italic_ฯˆ ( italic_t ) italic_d italic_t = - โˆซ start_POSTSUBSCRIPT italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT italic_ฯˆ ( italic_t ) italic_d italic_t = : italic_A ( italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT )

and t2โ†’bโˆ’โ†’subscript๐‘ก2superscript๐‘t_{2}\to b^{-}italic_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT โ†’ italic_b start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT as t1โ†’a+โ†’subscript๐‘ก1superscript๐‘Žt_{1}\to a^{+}italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT โ†’ italic_a start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT. By the integral average theorem, there are points tโˆ—โˆˆ(t1,t0)superscript๐‘กsubscript๐‘ก1subscript๐‘ก0t^{*}\in(t_{1},t_{0})italic_t start_POSTSUPERSCRIPT โˆ— end_POSTSUPERSCRIPT โˆˆ ( italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) and tโˆ—โˆ—โˆˆ(t0,t2)superscript๐‘กabsentsubscript๐‘ก0subscript๐‘ก2t^{**}\in(t_{0},t_{2})italic_t start_POSTSUPERSCRIPT โˆ— โˆ— end_POSTSUPERSCRIPT โˆˆ ( italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) such that

โˆซt1t0ฯ•โข(t)โขฯˆโข(t)โข๐‘‘tsuperscriptsubscriptsubscript๐‘ก1subscript๐‘ก0italic-ฯ•๐‘ก๐œ“๐‘กdifferential-d๐‘ก\displaystyle\int_{t_{1}}^{t_{0}}\phi(t)\psi(t)dtโˆซ start_POSTSUBSCRIPT italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT italic_ฯ• ( italic_t ) italic_ฯˆ ( italic_t ) italic_d italic_t=\displaystyle==ฯ•โข(tโˆ—)โขโˆซt1t0ฯˆโข(t)โข๐‘‘t=โˆ’ฯ•โข(tโˆ—)โขAโข(t1),italic-ฯ•superscript๐‘กsuperscriptsubscriptsubscript๐‘ก1subscript๐‘ก0๐œ“๐‘กdifferential-d๐‘กitalic-ฯ•superscript๐‘ก๐ดsubscript๐‘ก1\displaystyle\phi(t^{*})\int_{t_{1}}^{t_{0}}\psi(t)dt=-\phi(t^{*})A(t_{1}),italic_ฯ• ( italic_t start_POSTSUPERSCRIPT โˆ— end_POSTSUPERSCRIPT ) โˆซ start_POSTSUBSCRIPT italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT italic_ฯˆ ( italic_t ) italic_d italic_t = - italic_ฯ• ( italic_t start_POSTSUPERSCRIPT โˆ— end_POSTSUPERSCRIPT ) italic_A ( italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) ,
โˆซt0t2ฯ•โข(t)โขฯˆโข(t)โข๐‘‘tsuperscriptsubscriptsubscript๐‘ก0subscript๐‘ก2italic-ฯ•๐‘ก๐œ“๐‘กdifferential-d๐‘ก\displaystyle\int_{t_{0}}^{t_{2}}\phi(t)\psi(t)dtโˆซ start_POSTSUBSCRIPT italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT italic_ฯ• ( italic_t ) italic_ฯˆ ( italic_t ) italic_d italic_t=\displaystyle==ฯ•โข(tโˆ—โˆ—)โขโˆซt0t2ฯˆโข(t)โข๐‘‘t=ฯ•โข(tโˆ—โˆ—)โขAโข(t1).italic-ฯ•superscript๐‘กabsentsuperscriptsubscriptsubscript๐‘ก0subscript๐‘ก2๐œ“๐‘กdifferential-d๐‘กitalic-ฯ•superscript๐‘กabsent๐ดsubscript๐‘ก1\displaystyle\phi(t^{**})\int_{t_{0}}^{t_{2}}\psi(t)dt=\phi(t^{**})A(t_{1}).italic_ฯ• ( italic_t start_POSTSUPERSCRIPT โˆ— โˆ— end_POSTSUPERSCRIPT ) โˆซ start_POSTSUBSCRIPT italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT italic_ฯˆ ( italic_t ) italic_d italic_t = italic_ฯ• ( italic_t start_POSTSUPERSCRIPT โˆ— โˆ— end_POSTSUPERSCRIPT ) italic_A ( italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) .

Thus

โˆซabฯ•โข(t)โขฯˆโข(t)โข๐‘‘tsuperscriptsubscript๐‘Ž๐‘italic-ฯ•๐‘ก๐œ“๐‘กdifferential-d๐‘ก\displaystyle\int_{a}^{b}\phi(t)\psi(t)dtโˆซ start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_b end_POSTSUPERSCRIPT italic_ฯ• ( italic_t ) italic_ฯˆ ( italic_t ) italic_d italic_t=\displaystyle==limt1โ†’a+[โˆซt1t0ฯ•โข(t)โขฯˆโข(t)โข๐‘‘t+โˆซt0t2ฯ•โข(t)โขฯˆโข(t)โข๐‘‘t]subscriptโ†’subscript๐‘ก1superscript๐‘Ždelimited-[]superscriptsubscriptsubscript๐‘ก1subscript๐‘ก0italic-ฯ•๐‘ก๐œ“๐‘กdifferential-d๐‘กsuperscriptsubscriptsubscript๐‘ก0subscript๐‘ก2italic-ฯ•๐‘ก๐œ“๐‘กdifferential-d๐‘ก\displaystyle\lim_{t_{1}\to a^{+}}\left[\int_{t_{1}}^{t_{0}}\phi(t)\psi(t)dt+%\int_{t_{0}}^{t_{2}}\phi(t)\psi(t)dt\right]roman_lim start_POSTSUBSCRIPT italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT โ†’ italic_a start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT end_POSTSUBSCRIPT [ โˆซ start_POSTSUBSCRIPT italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT italic_ฯ• ( italic_t ) italic_ฯˆ ( italic_t ) italic_d italic_t + โˆซ start_POSTSUBSCRIPT italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT italic_ฯ• ( italic_t ) italic_ฯˆ ( italic_t ) italic_d italic_t ]
=\displaystyle==limt1โ†’a+[โˆ’ฯ•โข(tโˆ—)โขAโข(t1)+ฯ•โข(tโˆ—โˆ—)โขAโข(t1)]subscriptโ†’subscript๐‘ก1superscript๐‘Ždelimited-[]italic-ฯ•superscript๐‘ก๐ดsubscript๐‘ก1italic-ฯ•superscript๐‘กabsent๐ดsubscript๐‘ก1\displaystyle\lim_{t_{1}\to a^{+}}\left[-\phi(t^{*})A(t_{1})+\phi(t^{**})A(t_{%1})\right]roman_lim start_POSTSUBSCRIPT italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT โ†’ italic_a start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT end_POSTSUBSCRIPT [ - italic_ฯ• ( italic_t start_POSTSUPERSCRIPT โˆ— end_POSTSUPERSCRIPT ) italic_A ( italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) + italic_ฯ• ( italic_t start_POSTSUPERSCRIPT โˆ— โˆ— end_POSTSUPERSCRIPT ) italic_A ( italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) ]
=\displaystyle==limt1โ†’a+[โˆ’ฯ•โข(tโˆ—)+ฯ•โข(tโˆ—โˆ—)]โขAโข(t1)<0subscriptโ†’subscript๐‘ก1superscript๐‘Ždelimited-[]italic-ฯ•superscript๐‘กitalic-ฯ•superscript๐‘กabsent๐ดsubscript๐‘ก10\displaystyle\lim_{t_{1}\to a^{+}}\left[-\phi(t^{*})+\phi(t^{**})\right]A(t_{1%})<0roman_lim start_POSTSUBSCRIPT italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT โ†’ italic_a start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT end_POSTSUBSCRIPT [ - italic_ฯ• ( italic_t start_POSTSUPERSCRIPT โˆ— end_POSTSUPERSCRIPT ) + italic_ฯ• ( italic_t start_POSTSUPERSCRIPT โˆ— โˆ— end_POSTSUPERSCRIPT ) ] italic_A ( italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) < 0

because tโˆ—<t0<tโˆ—โˆ—superscript๐‘กsubscript๐‘ก0superscript๐‘กabsentt^{*}<t_{0}<t^{**}italic_t start_POSTSUPERSCRIPT โˆ— end_POSTSUPERSCRIPT < italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT < italic_t start_POSTSUPERSCRIPT โˆ— โˆ— end_POSTSUPERSCRIPT and thanks to condition (i).โˆŽ

Choosing in this lemma ฯ•โข(t)=eโˆ’sโขtitalic-ฯ•๐‘กsuperscript๐‘’๐‘ ๐‘ก\phi(t)=e^{-st}italic_ฯ• ( italic_t ) = italic_e start_POSTSUPERSCRIPT - italic_s italic_t end_POSTSUPERSCRIPT, we conclude the following:

Corollary 2.3.

Let function ฯˆโˆˆCโข(0,โˆž)๐œ“๐ถ0\psi\in C(0,\infty)italic_ฯˆ โˆˆ italic_C ( 0 , โˆž ), ฯˆโข(t)<0๐œ“๐‘ก0\psi(t)<0italic_ฯˆ ( italic_t ) < 0 as tโˆˆ(0,t0)๐‘ก0subscript๐‘ก0t\in(0,t_{0})italic_t โˆˆ ( 0 , italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) for some t0โˆˆ(0,โˆž)subscript๐‘ก00t_{0}\in(0,\infty)italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT โˆˆ ( 0 , โˆž ), ฯˆโข(t)>0๐œ“๐‘ก0\psi(t)>0italic_ฯˆ ( italic_t ) > 0 as tโˆˆ(t0,โˆž)๐‘กsubscript๐‘ก0t\in(t_{0},\infty)italic_t โˆˆ ( italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , โˆž ), and โˆซ0โˆžฯˆโข(t)โข๐‘‘t=0superscriptsubscript0๐œ“๐‘กdifferential-d๐‘ก0\displaystyle\int_{0}^{\infty}\psi(t)dt=0โˆซ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT โˆž end_POSTSUPERSCRIPT italic_ฯˆ ( italic_t ) italic_d italic_t = 0.Then the Laplace transform โ„’โข[ฯˆ]โข(s)โ„’delimited-[]๐œ“๐‘ \mathcal{L}[\psi](s)caligraphic_L [ italic_ฯˆ ] ( italic_s ) is negative in s>0๐‘ 0s>0italic_s > 0.

We now turn to the GauรŸ hypergeometric function F12โข(a,b;c;โ‹…)subscriptsubscript๐น12๐‘Ž๐‘๐‘โ‹…{{}_{2}F_{1}}(a,b;c;\cdot)start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT italic_F start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_a , italic_b ; italic_c ; โ‹… ). Here a,b,cโˆˆโ„‚๐‘Ž๐‘๐‘โ„‚a,b,c\in\mathbb{C}italic_a , italic_b , italic_c โˆˆ blackboard_C are parameters that satisfy 0<Reb<Rec0Re๐‘Re๐‘0<\mathop{\rm Re}\nolimits b<\mathop{\rm Re}\nolimits c0 < roman_Re italic_b < roman_Re italic_c. Recall that this function is defined for zโˆˆ๐”ป๐‘ง๐”ปz\in\mathbb{D}italic_z โˆˆ blackboard_D by

F12โข(a,b;c;z)=1+โˆ‘n=1โˆž(a)nโข(b)n(c)nโขn!โขzn=ฮ“โข(c)ฮ“โข(b)โขฮ“โข(cโˆ’b)โขโˆซ01xbโˆ’1โข(1โˆ’x)cโˆ’bโˆ’1(1โˆ’zโขx)aโข๐‘‘x,subscriptsubscript๐น12๐‘Ž๐‘๐‘๐‘ง1superscriptsubscript๐‘›1subscript๐‘Ž๐‘›subscript๐‘๐‘›subscript๐‘๐‘›๐‘›superscript๐‘ง๐‘›ฮ“๐‘ฮ“๐‘ฮ“๐‘๐‘superscriptsubscript01superscript๐‘ฅ๐‘1superscript1๐‘ฅ๐‘๐‘1superscript1๐‘ง๐‘ฅ๐‘Ždifferential-d๐‘ฅ{{}_{2}F_{1}}(a,b;c;z)=1+\sum_{n=1}^{\infty}\frac{(a)_{n}(b)_{n}}{(c)_{n}n!}z^%{n}=\frac{\Gamma(c)}{\Gamma(b)\Gamma(c-b)}\int_{0}^{1}\frac{x^{b-1}(1-x)^{c-b-%1}}{(1-zx)^{a}}dx,start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT italic_F start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_a , italic_b ; italic_c ; italic_z ) = 1 + โˆ‘ start_POSTSUBSCRIPT italic_n = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT โˆž end_POSTSUPERSCRIPT divide start_ARG ( italic_a ) start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( italic_b ) start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT end_ARG start_ARG ( italic_c ) start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_n ! end_ARG italic_z start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT = divide start_ARG roman_ฮ“ ( italic_c ) end_ARG start_ARG roman_ฮ“ ( italic_b ) roman_ฮ“ ( italic_c - italic_b ) end_ARG โˆซ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT divide start_ARG italic_x start_POSTSUPERSCRIPT italic_b - 1 end_POSTSUPERSCRIPT ( 1 - italic_x ) start_POSTSUPERSCRIPT italic_c - italic_b - 1 end_POSTSUPERSCRIPT end_ARG start_ARG ( 1 - italic_z italic_x ) start_POSTSUPERSCRIPT italic_a end_POSTSUPERSCRIPT end_ARG italic_d italic_x ,(2.1)

where (ฮฑ)n=ฮ“โข(ฮฑ+n)ฮ“โข(ฮฑ)=ฮฑโ‹…(ฮฑ+1)โ‹…โ€ฆโ‹…(ฮฑ+nโˆ’1)subscript๐›ผ๐‘›ฮ“๐›ผ๐‘›ฮ“๐›ผโ‹…๐›ผ๐›ผ1โ€ฆ๐›ผ๐‘›1(\alpha)_{n}=\frac{\Gamma(\alpha+n)}{\Gamma(\alpha)}=\alpha\cdot(\alpha+1)%\cdot\ldots\cdot(\alpha+n-1)( italic_ฮฑ ) start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT = divide start_ARG roman_ฮ“ ( italic_ฮฑ + italic_n ) end_ARG start_ARG roman_ฮ“ ( italic_ฮฑ ) end_ARG = italic_ฮฑ โ‹… ( italic_ฮฑ + 1 ) โ‹… โ€ฆ โ‹… ( italic_ฮฑ + italic_n - 1 ) is the Pochhammer symbol.For geometric properties of F12โข(a,b;c;z)subscriptsubscript๐น12๐‘Ž๐‘๐‘๐‘ง{{}_{2}F_{1}}(a,b;c;z)start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT italic_F start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_a , italic_b ; italic_c ; italic_z ), we refer to the useful papers [1, 13, 15] and the references therein. If c=a+b๐‘๐‘Ž๐‘c=a+bitalic_c = italic_a + italic_b, the hypergeometric function F12โข(a,b;a+b;z)subscriptsubscript๐น12๐‘Ž๐‘๐‘Ž๐‘๐‘ง{{}_{2}F_{1}}(a,b;a+b;z)start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT italic_F start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_a , italic_b ; italic_a + italic_b ; italic_z ) is called zero-balanced.

We now consider the following functions:

ฮพ0โข(s):=2โขF12โข(1,s;s+1;โˆ’1)โˆ’1=โˆซ011โˆ’x1+xโขsโขxsโˆ’1โข๐‘‘xassignsubscript๐œ‰0๐‘ 2subscriptsubscript๐น121๐‘ ๐‘ 111superscriptsubscript011๐‘ฅ1๐‘ฅ๐‘ superscript๐‘ฅ๐‘ 1differential-d๐‘ฅ\xi_{0}(s):=2{{}_{2}F_{1}}(1,s;s+1;-1)-1=\int_{0}^{1}\frac{1-x}{1+x}\,sx^{s-1}dxitalic_ฮพ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_s ) := 2 start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT italic_F start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( 1 , italic_s ; italic_s + 1 ; - 1 ) - 1 = โˆซ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT divide start_ARG 1 - italic_x end_ARG start_ARG 1 + italic_x end_ARG italic_s italic_x start_POSTSUPERSCRIPT italic_s - 1 end_POSTSUPERSCRIPT italic_d italic_x(2.2)

and

ฮพ1โข(s):=1โˆ’ฮพ0โข(s)2โขs,ฮพ2โข(s):=2โขsโขฮพ0โข(s),ฮพ3โข(s):=1โˆ’ฮพ0โข(s)2โขsโขฮพ0โข(s),s>0.formulae-sequenceassignsubscript๐œ‰1๐‘ 1subscript๐œ‰0๐‘ 2๐‘ formulae-sequenceassignsubscript๐œ‰2๐‘ 2๐‘ subscript๐œ‰0๐‘ formulae-sequenceassignsubscript๐œ‰3๐‘ 1subscript๐œ‰0๐‘ 2๐‘ subscript๐œ‰0๐‘ ๐‘ 0\xi_{1}(s):=\frac{1-\xi_{0}(s)}{2s}\,,\quad\xi_{2}(s):=2s\xi_{0}(s),\quad\xi_{%3}(s):=\frac{1-\xi_{0}(s)}{2s\xi_{0}(s)}\,,\quad s>0.italic_ฮพ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_s ) := divide start_ARG 1 - italic_ฮพ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_s ) end_ARG start_ARG 2 italic_s end_ARG , italic_ฮพ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_s ) := 2 italic_s italic_ฮพ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_s ) , italic_ฮพ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ( italic_s ) := divide start_ARG 1 - italic_ฮพ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_s ) end_ARG start_ARG 2 italic_s italic_ฮพ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_s ) end_ARG , italic_s > 0 .(2.3)
Theorem 2.4.

The functions ฮพ0,ฮพ1,ฮพ2subscript๐œ‰0subscript๐œ‰1subscript๐œ‰2\xi_{0},\,\xi_{1},\,\xi_{2}italic_ฮพ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_ฮพ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_ฮพ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT and ฮพ3subscript๐œ‰3\xi_{3}italic_ฮพ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT are continuous on (0,โˆž).0(0,\infty).( 0 , โˆž ) . Moreover,

  • (i)

    function ฮพ0subscript๐œ‰0\xi_{0}italic_ฮพ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT is decreasing and maps (0,โˆž)0(0,\infty)( 0 , โˆž ) onto (0,1)01(0,1)( 0 , 1 ) and such that the function sโ†ฆs2โขฮพ0โ€ฒโข(s)maps-to๐‘ superscript๐‘ 2superscriptsubscript๐œ‰0โ€ฒ๐‘ s\mapsto s^{2}\xi_{0}^{\prime}(s)italic_s โ†ฆ italic_s start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_ฮพ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT ( italic_s ) is decreasing;

  • (ii)

    function ฮพ1subscript๐œ‰1\xi_{1}italic_ฮพ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT is decreasing and maps (0,โˆž)0(0,\infty)( 0 , โˆž ) onto (0,lnโก2)02(0,\ln 2)( 0 , roman_ln 2 );

  • (iii)

    function ฮพ2subscript๐œ‰2\xi_{2}italic_ฮพ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT is increasing and maps (0,โˆž)0(0,\infty)( 0 , โˆž ) onto (0,1)01(0,1)( 0 , 1 );

  • (iv)

    function ฮพ3subscript๐œ‰3\xi_{3}italic_ฮพ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT is increasing and maps (0,โˆž)0(0,\infty)( 0 , โˆž ) onto (lnโก2,1)21(\ln 2,1)( roman_ln 2 , 1 ).

Thus, since these functions are monotone, they can be extended to [0,โˆž)0[0,\infty)[ 0 , โˆž ) and even be defined by continuity at โˆž\inftyโˆž.

Proof.

Since ฮพ0โ€ฒโข(s)=โˆซ011โˆ’x1+xโ‹…โˆ‚โˆ‚xโข(xsโขlnโกx)โข๐‘‘x=โˆซ012โขxsโขlnโกx(1+x)2โข๐‘‘x<0superscriptsubscript๐œ‰0โ€ฒ๐‘ superscriptsubscript01โ‹…1๐‘ฅ1๐‘ฅ๐‘ฅsuperscript๐‘ฅ๐‘ ๐‘ฅdifferential-d๐‘ฅsuperscriptsubscript012superscript๐‘ฅ๐‘ ๐‘ฅsuperscript1๐‘ฅ2differential-d๐‘ฅ0\displaystyle\xi_{0}^{\prime}(s)=\int_{0}^{1}\frac{1-x}{1+x}\cdot\frac{%\partial}{\partial x}\left(x^{s}\ln x\right)dx=\int_{0}^{1}\frac{2x^{s}\ln x}{%(1+x)^{2}}\,dx<0italic_ฮพ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT ( italic_s ) = โˆซ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT divide start_ARG 1 - italic_x end_ARG start_ARG 1 + italic_x end_ARG โ‹… divide start_ARG โˆ‚ end_ARG start_ARG โˆ‚ italic_x end_ARG ( italic_x start_POSTSUPERSCRIPT italic_s end_POSTSUPERSCRIPT roman_ln italic_x ) italic_d italic_x = โˆซ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT divide start_ARG 2 italic_x start_POSTSUPERSCRIPT italic_s end_POSTSUPERSCRIPT roman_ln italic_x end_ARG start_ARG ( 1 + italic_x ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG italic_d italic_x < 0, function ฮพ0subscript๐œ‰0\xi_{0}italic_ฮพ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT is decreasing. In addition, (s2โขฮพ0โ€ฒโข(s))โ€ฒ=โˆ’2โขโˆซ011โˆ’x(1+x)3โขxsโขln2โกxโขdโขx<0superscriptsuperscript๐‘ 2superscriptsubscript๐œ‰0โ€ฒ๐‘ โ€ฒ2superscriptsubscript011๐‘ฅsuperscript1๐‘ฅ3superscript๐‘ฅ๐‘ superscript2๐‘ฅ๐‘‘๐‘ฅ0{\displaystyle(s^{2}\xi_{0}^{\prime}(s))^{\prime}=-2\int\limits_{0}^{1}\frac{1%-x}{(1+x)^{3}}x^{s}\ln^{2}x\,dx<0}( italic_s start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_ฮพ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT ( italic_s ) ) start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT = - 2 โˆซ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT divide start_ARG 1 - italic_x end_ARG start_ARG ( 1 + italic_x ) start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG italic_x start_POSTSUPERSCRIPT italic_s end_POSTSUPERSCRIPT roman_ln start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_x italic_d italic_x < 0, so, statement (i) follows.

Further, note that ฮพ1โข(s)=โˆซ01xs1+xโข๐‘‘x,subscript๐œ‰1๐‘ superscriptsubscript01superscript๐‘ฅ๐‘ 1๐‘ฅdifferential-d๐‘ฅ\displaystyle\xi_{1}(s)=\int_{0}^{1}\frac{x^{s}}{1+x}\,dx,italic_ฮพ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_s ) = โˆซ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT divide start_ARG italic_x start_POSTSUPERSCRIPT italic_s end_POSTSUPERSCRIPT end_ARG start_ARG 1 + italic_x end_ARG italic_d italic_x , which implies statement (ii).

As for function ฮพ2subscript๐œ‰2\xi_{2}italic_ฮพ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT, fix arbitrary s2>s1>0subscript๐‘ 2subscript๐‘ 10s_{2}>s_{1}>0italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT > italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT > 0. According to Cauchyโ€™s mean value theorem applied to the functions ฮพ0โข(s),1/sโˆˆCโข[s1,s2]subscript๐œ‰0๐‘ 1๐‘ ๐ถsubscript๐‘ 1subscript๐‘ 2\xi_{0}(s),1/s\in C[s_{1},s_{2}]italic_ฮพ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_s ) , 1 / italic_s โˆˆ italic_C [ italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ], there is s~โˆˆ(s1,s2)~๐‘ subscript๐‘ 1subscript๐‘ 2\tilde{s}\in(s_{1},s_{2})over~ start_ARG italic_s end_ARG โˆˆ ( italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) such that

ฮพ0โ€ฒโข(s~)โˆ’1/s~2=ฮพ0โข(s2)โˆ’ฮพ0โข(s1)1/s2โˆ’1/s1.superscriptsubscript๐œ‰0โ€ฒ~๐‘ 1superscript~๐‘ 2subscript๐œ‰0subscript๐‘ 2subscript๐œ‰0subscript๐‘ 11subscript๐‘ 21subscript๐‘ 1\displaystyle\frac{\xi_{0}^{\prime}(\tilde{s})}{-1/\tilde{s}^{2}}=\frac{\xi_{0%}(s_{2})-\xi_{0}(s_{1})}{1/s_{2}-1/s_{1}}.divide start_ARG italic_ฮพ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT ( over~ start_ARG italic_s end_ARG ) end_ARG start_ARG - 1 / over~ start_ARG italic_s end_ARG start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG = divide start_ARG italic_ฮพ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) - italic_ฮพ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) end_ARG start_ARG 1 / italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT - 1 / italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG .

Since the function s2โขฮพ0โ€ฒโข(s)superscript๐‘ 2superscriptsubscript๐œ‰0โ€ฒ๐‘ s^{2}\xi_{0}^{\prime}(s)italic_s start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_ฮพ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT ( italic_s ) is decreasing, s12โขฮพ0โ€ฒโข(s1)>s~2โขฮพ0โ€ฒโข(s~)=โˆ’ฮพ0โข(s2)โˆ’ฮพ0โข(s1)1/s2โˆ’1/s1superscriptsubscript๐‘ 12subscriptsuperscript๐œ‰โ€ฒ0subscript๐‘ 1superscript~๐‘ 2superscriptsubscript๐œ‰0โ€ฒ~๐‘ subscript๐œ‰0subscript๐‘ 2subscript๐œ‰0subscript๐‘ 11subscript๐‘ 21subscript๐‘ 1s_{1}^{2}\xi^{\prime}_{0}(s_{1})>\tilde{s}^{2}\xi_{0}^{\prime}(\tilde{s})=-%\frac{\xi_{0}(s_{2})-\xi_{0}(s_{1})}{1/s_{2}-1/s_{1}}italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_ฮพ start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) > over~ start_ARG italic_s end_ARG start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_ฮพ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT ( over~ start_ARG italic_s end_ARG ) = - divide start_ARG italic_ฮพ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) - italic_ฮพ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) end_ARG start_ARG 1 / italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT - 1 / italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG. Letting s2โ†’โˆžโ†’subscript๐‘ 2{s_{2}\to\infty}italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT โ†’ โˆž, we conclude that s1โขฮพ0โ€ฒโข(s1)>โˆ’ฮพ0โข(s1)subscript๐‘ 1subscriptsuperscript๐œ‰โ€ฒ0subscript๐‘ 1subscript๐œ‰0subscript๐‘ 1s_{1}\xi^{\prime}_{0}(s_{1})>-\xi_{0}(s_{1})italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_ฮพ start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) > - italic_ฮพ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ). Because the point s1subscript๐‘ 1s_{1}italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT is arbitrary, one has ฮพ0โ€ฒโข(s)ฮพ0โข(s)+1s>0superscriptsubscript๐œ‰0โ€ฒ๐‘ subscript๐œ‰0๐‘ 1๐‘ 0\frac{\xi_{0}^{\prime}(s)}{\xi_{0}(s)}+\frac{1}{s}>0divide start_ARG italic_ฮพ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT ( italic_s ) end_ARG start_ARG italic_ฮพ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_s ) end_ARG + divide start_ARG 1 end_ARG start_ARG italic_s end_ARG > 0, or, which is the same, (logโกฮพ2โข(s))โ€ฒ>0superscriptsubscript๐œ‰2๐‘ โ€ฒ0\left(\log\xi_{2}(s)\right)^{\prime}>0( roman_log italic_ฮพ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_s ) ) start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT > 0. Thus statement (iii) is proved.

To prove statement (iv), one has show ฮพ3โ€ฒโข(s)>0superscriptsubscript๐œ‰3โ€ฒ๐‘ 0\xi_{3}^{\prime}(s)>0italic_ฮพ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT ( italic_s ) > 0. This inequality is equivalent to

gโข(s)<0,wheregโข(s):=(1โˆ’ฮพ0โข(s))โขฮพ0โข(s)+sโขฮพ0โ€ฒโข(s)formulae-sequence๐‘”๐‘ 0whereassign๐‘”๐‘ 1subscript๐œ‰0๐‘ subscript๐œ‰0๐‘ ๐‘ superscriptsubscript๐œ‰0โ€ฒ๐‘ g(s)<0,\quad\mbox{where}\quad g(s):=(1-\xi_{0}(s))\xi_{0}(s)+s\xi_{0}^{\prime}%(s)italic_g ( italic_s ) < 0 , where italic_g ( italic_s ) := ( 1 - italic_ฮพ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_s ) ) italic_ฮพ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_s ) + italic_s italic_ฮพ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT ( italic_s )(2.4)

Return to the integral in (2.2) defining the function ฮพ0subscript๐œ‰0\xi_{0}italic_ฮพ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT and substitute there x=eโˆ’t๐‘ฅsuperscript๐‘’๐‘กx=e^{-t}italic_x = italic_e start_POSTSUPERSCRIPT - italic_t end_POSTSUPERSCRIPT:

ฮพ0โข(s)=โˆซ0โˆž1โˆ’eโˆ’t1+eโˆ’tโขsโขeโˆ’tโขsโข๐‘‘t=sโขโ„’โข[1โˆ’eโˆ’t1+eโˆ’t]โข(s)=โ„’โข[2โขeโˆ’t(1+eโˆ’t)2]โข(s),subscript๐œ‰0๐‘ superscriptsubscript01superscript๐‘’๐‘ก1superscript๐‘’๐‘ก๐‘ superscript๐‘’๐‘ก๐‘ differential-d๐‘ก๐‘ โ„’delimited-[]1superscript๐‘’๐‘ก1superscript๐‘’๐‘ก๐‘ โ„’delimited-[]2superscript๐‘’๐‘กsuperscript1superscript๐‘’๐‘ก2๐‘ \xi_{0}(s)=\int_{0}^{\infty}\frac{1-e^{-t}}{1+e^{-t}}\,se^{-ts}dt=s\mathcal{L}%\left[\frac{1-e^{-t}}{1+e^{-t}}\right]\!(s)=\mathcal{L}\left[\frac{2e^{-t}}{(1%+e^{-t})^{2}}\right]\!(s),italic_ฮพ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_s ) = โˆซ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT โˆž end_POSTSUPERSCRIPT divide start_ARG 1 - italic_e start_POSTSUPERSCRIPT - italic_t end_POSTSUPERSCRIPT end_ARG start_ARG 1 + italic_e start_POSTSUPERSCRIPT - italic_t end_POSTSUPERSCRIPT end_ARG italic_s italic_e start_POSTSUPERSCRIPT - italic_t italic_s end_POSTSUPERSCRIPT italic_d italic_t = italic_s caligraphic_L [ divide start_ARG 1 - italic_e start_POSTSUPERSCRIPT - italic_t end_POSTSUPERSCRIPT end_ARG start_ARG 1 + italic_e start_POSTSUPERSCRIPT - italic_t end_POSTSUPERSCRIPT end_ARG ] ( italic_s ) = caligraphic_L [ divide start_ARG 2 italic_e start_POSTSUPERSCRIPT - italic_t end_POSTSUPERSCRIPT end_ARG start_ARG ( 1 + italic_e start_POSTSUPERSCRIPT - italic_t end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ] ( italic_s ) ,

where โ„’โ„’\mathcal{L}caligraphic_L is the Laplace transform. Similarly,

1โˆ’ฮพ0โข(s)=โˆซ0โˆž2โขeโˆ’t1+eโˆ’tโขsโขeโˆ’tโขsโข๐‘‘t=sโขโ„’โข[2โขeโˆ’t1+eโˆ’t]โข(s)1subscript๐œ‰0๐‘ superscriptsubscript02superscript๐‘’๐‘ก1superscript๐‘’๐‘ก๐‘ superscript๐‘’๐‘ก๐‘ differential-d๐‘ก๐‘ โ„’delimited-[]2superscript๐‘’๐‘ก1superscript๐‘’๐‘ก๐‘ 1-\xi_{0}(s)=\int_{0}^{\infty}\frac{2e^{-t}}{1+e^{-t}}\,se^{-ts}dt=s\mathcal{L%}\left[\frac{2e^{-t}}{1+e^{-t}}\right]\!(s)1 - italic_ฮพ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_s ) = โˆซ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT โˆž end_POSTSUPERSCRIPT divide start_ARG 2 italic_e start_POSTSUPERSCRIPT - italic_t end_POSTSUPERSCRIPT end_ARG start_ARG 1 + italic_e start_POSTSUPERSCRIPT - italic_t end_POSTSUPERSCRIPT end_ARG italic_s italic_e start_POSTSUPERSCRIPT - italic_t italic_s end_POSTSUPERSCRIPT italic_d italic_t = italic_s caligraphic_L [ divide start_ARG 2 italic_e start_POSTSUPERSCRIPT - italic_t end_POSTSUPERSCRIPT end_ARG start_ARG 1 + italic_e start_POSTSUPERSCRIPT - italic_t end_POSTSUPERSCRIPT end_ARG ] ( italic_s )

and

ฮพ0โ€ฒโข(s)=โˆ’โ„’โข[2โขtโขeโˆ’t(1+eโˆ’t)2]โข(s).subscriptsuperscript๐œ‰โ€ฒ0๐‘ โ„’delimited-[]2๐‘กsuperscript๐‘’๐‘กsuperscript1superscript๐‘’๐‘ก2๐‘ \xi^{\prime}_{0}(s)=-\mathcal{L}\left[\frac{2te^{-t}}{(1+e^{-t})^{2}}\right]\!%(s).italic_ฮพ start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_s ) = - caligraphic_L [ divide start_ARG 2 italic_t italic_e start_POSTSUPERSCRIPT - italic_t end_POSTSUPERSCRIPT end_ARG start_ARG ( 1 + italic_e start_POSTSUPERSCRIPT - italic_t end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ] ( italic_s ) .

Thus g๐‘”gitalic_g takes the form

gโข(s)๐‘”๐‘ \displaystyle g(s)italic_g ( italic_s )=\displaystyle==โ„’โข[2โขeโˆ’t(1+eโˆ’t)2]โข(s)โ‹…sโขโ„’โข[2โขeโˆ’t1+eโˆ’t]โข(s)โˆ’sโขโ„’โข[2โขtโขeโˆ’t(1+eโˆ’t)2]โข(s)โ‹…โ„’delimited-[]2superscript๐‘’๐‘กsuperscript1superscript๐‘’๐‘ก2๐‘ ๐‘ โ„’delimited-[]2superscript๐‘’๐‘ก1superscript๐‘’๐‘ก๐‘ ๐‘ โ„’delimited-[]2๐‘กsuperscript๐‘’๐‘กsuperscript1superscript๐‘’๐‘ก2๐‘ \displaystyle\mathcal{L}\left[\frac{2e^{-t}}{(1+e^{-t})^{2}}\right]\!(s)\cdot s%\mathcal{L}\left[\frac{2e^{-t}}{1+e^{-t}}\right]\!(s)-s\mathcal{L}\left[\frac{%2te^{-t}}{(1+e^{-t})^{2}}\right]\!(s)caligraphic_L [ divide start_ARG 2 italic_e start_POSTSUPERSCRIPT - italic_t end_POSTSUPERSCRIPT end_ARG start_ARG ( 1 + italic_e start_POSTSUPERSCRIPT - italic_t end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ] ( italic_s ) โ‹… italic_s caligraphic_L [ divide start_ARG 2 italic_e start_POSTSUPERSCRIPT - italic_t end_POSTSUPERSCRIPT end_ARG start_ARG 1 + italic_e start_POSTSUPERSCRIPT - italic_t end_POSTSUPERSCRIPT end_ARG ] ( italic_s ) - italic_s caligraphic_L [ divide start_ARG 2 italic_t italic_e start_POSTSUPERSCRIPT - italic_t end_POSTSUPERSCRIPT end_ARG start_ARG ( 1 + italic_e start_POSTSUPERSCRIPT - italic_t end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ] ( italic_s )
=\displaystyle==2โขsโขโ„’โข[2โขeโˆ’t(1+eโˆ’t)2โˆ—eโˆ’t1+eโˆ’tโˆ’tโขeโˆ’t(1+eโˆ’t)2]โข(s).2๐‘ โ„’delimited-[]2superscript๐‘’๐‘กsuperscript1superscript๐‘’๐‘ก2superscript๐‘’๐‘ก1superscript๐‘’๐‘ก๐‘กsuperscript๐‘’๐‘กsuperscript1superscript๐‘’๐‘ก2๐‘ \displaystyle 2s\mathcal{L}\left[\frac{2e^{-t}}{(1+e^{-t})^{2}}*\frac{e^{-t}}{%1+e^{-t}}-\frac{te^{-t}}{(1+e^{-t})^{2}}\right]\!(s).2 italic_s caligraphic_L [ divide start_ARG 2 italic_e start_POSTSUPERSCRIPT - italic_t end_POSTSUPERSCRIPT end_ARG start_ARG ( 1 + italic_e start_POSTSUPERSCRIPT - italic_t end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG โˆ— divide start_ARG italic_e start_POSTSUPERSCRIPT - italic_t end_POSTSUPERSCRIPT end_ARG start_ARG 1 + italic_e start_POSTSUPERSCRIPT - italic_t end_POSTSUPERSCRIPT end_ARG - divide start_ARG italic_t italic_e start_POSTSUPERSCRIPT - italic_t end_POSTSUPERSCRIPT end_ARG start_ARG ( 1 + italic_e start_POSTSUPERSCRIPT - italic_t end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ] ( italic_s ) .

In order to calculate the convolution, we first find the primitive function:

โˆซ2โขeโˆ’x(1+eโˆ’x)2โ‹…exโˆ’t1+exโˆ’tโข๐‘‘x=2โขetโขlogโก(ex+1)(etโˆ’1)2+2(etโˆ’1)โข(ex+1)โˆ’2โขetโขlogโก(et+ex)(etโˆ’1)2+C.โ‹…2superscript๐‘’๐‘ฅsuperscript1superscript๐‘’๐‘ฅ2superscript๐‘’๐‘ฅ๐‘ก1superscript๐‘’๐‘ฅ๐‘กdifferential-d๐‘ฅ2superscript๐‘’๐‘กsuperscript๐‘’๐‘ฅ1superscriptsuperscript๐‘’๐‘ก122superscript๐‘’๐‘ก1superscript๐‘’๐‘ฅ12superscript๐‘’๐‘กsuperscript๐‘’๐‘กsuperscript๐‘’๐‘ฅsuperscriptsuperscript๐‘’๐‘ก12๐ถ\int\frac{2e^{-x}}{(1+e^{-x})^{2}}\cdot\frac{e^{x-t}}{1+e^{x-t}}\,dx=\frac{2e^%{t}\log(e^{x}+1)}{(e^{t}-1)^{2}}+\frac{2}{(e^{t}-1)(e^{x}+1)}-\frac{2e^{t}\log%(e^{t}+e^{x})}{(e^{t}-1)^{2}}+C.โˆซ divide start_ARG 2 italic_e start_POSTSUPERSCRIPT - italic_x end_POSTSUPERSCRIPT end_ARG start_ARG ( 1 + italic_e start_POSTSUPERSCRIPT - italic_x end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG โ‹… divide start_ARG italic_e start_POSTSUPERSCRIPT italic_x - italic_t end_POSTSUPERSCRIPT end_ARG start_ARG 1 + italic_e start_POSTSUPERSCRIPT italic_x - italic_t end_POSTSUPERSCRIPT end_ARG italic_d italic_x = divide start_ARG 2 italic_e start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT roman_log ( italic_e start_POSTSUPERSCRIPT italic_x end_POSTSUPERSCRIPT + 1 ) end_ARG start_ARG ( italic_e start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT - 1 ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG + divide start_ARG 2 end_ARG start_ARG ( italic_e start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT - 1 ) ( italic_e start_POSTSUPERSCRIPT italic_x end_POSTSUPERSCRIPT + 1 ) end_ARG - divide start_ARG 2 italic_e start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT roman_log ( italic_e start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT + italic_e start_POSTSUPERSCRIPT italic_x end_POSTSUPERSCRIPT ) end_ARG start_ARG ( italic_e start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT - 1 ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG + italic_C .

Thus

2โขeโˆ’t(1+eโˆ’t)2โˆ—eโˆ’t1+eโˆ’t2superscript๐‘’๐‘กsuperscript1superscript๐‘’๐‘ก2superscript๐‘’๐‘ก1superscript๐‘’๐‘ก\displaystyle\frac{2e^{-t}}{(1+e^{-t})^{2}}*\frac{e^{-t}}{1+e^{-t}}divide start_ARG 2 italic_e start_POSTSUPERSCRIPT - italic_t end_POSTSUPERSCRIPT end_ARG start_ARG ( 1 + italic_e start_POSTSUPERSCRIPT - italic_t end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG โˆ— divide start_ARG italic_e start_POSTSUPERSCRIPT - italic_t end_POSTSUPERSCRIPT end_ARG start_ARG 1 + italic_e start_POSTSUPERSCRIPT - italic_t end_POSTSUPERSCRIPT end_ARG=\displaystyle==4โขetโขlogโก(et+1)(etโˆ’1)2โˆ’4โขetโขlogโก2(etโˆ’1)2โˆ’2โขtโขet(etโˆ’1)2โˆ’1et+14superscript๐‘’๐‘กsuperscript๐‘’๐‘ก1superscriptsuperscript๐‘’๐‘ก124superscript๐‘’๐‘ก2superscriptsuperscript๐‘’๐‘ก122๐‘กsuperscript๐‘’๐‘กsuperscriptsuperscript๐‘’๐‘ก121superscript๐‘’๐‘ก1\displaystyle\frac{4e^{t}\log(e^{t}+1)}{(e^{t}-1)^{2}}-\frac{4e^{t}\log 2}{(e^%{t}-1)^{2}}-\frac{2te^{t}}{(e^{t}-1)^{2}}-\frac{1}{e^{t}+1}divide start_ARG 4 italic_e start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT roman_log ( italic_e start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT + 1 ) end_ARG start_ARG ( italic_e start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT - 1 ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG - divide start_ARG 4 italic_e start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT roman_log 2 end_ARG start_ARG ( italic_e start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT - 1 ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG - divide start_ARG 2 italic_t italic_e start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT end_ARG start_ARG ( italic_e start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT - 1 ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG - divide start_ARG 1 end_ARG start_ARG italic_e start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT + 1 end_ARG

and

gโข(s)2โขs๐‘”๐‘ 2๐‘ \displaystyle\frac{g(s)}{2s}divide start_ARG italic_g ( italic_s ) end_ARG start_ARG 2 italic_s end_ARG=\displaystyle==โ„’โข[4โขetโขlogโก(et+1)(etโˆ’1)2โˆ’4โขetโขlogโก2(etโˆ’1)2โˆ’2โขtโขet(etโˆ’1)2โˆ’1et+1โˆ’tโขeโˆ’t(1+eโˆ’t)2]โข(s)โ„’delimited-[]4superscript๐‘’๐‘กsuperscript๐‘’๐‘ก1superscriptsuperscript๐‘’๐‘ก124superscript๐‘’๐‘ก2superscriptsuperscript๐‘’๐‘ก122๐‘กsuperscript๐‘’๐‘กsuperscriptsuperscript๐‘’๐‘ก121superscript๐‘’๐‘ก1๐‘กsuperscript๐‘’๐‘กsuperscript1superscript๐‘’๐‘ก2๐‘ \displaystyle\mathcal{L}\left[\frac{4e^{t}\log(e^{t}+1)}{(e^{t}-1)^{2}}-\frac{%4e^{t}\log 2}{(e^{t}-1)^{2}}-\frac{2te^{t}}{(e^{t}-1)^{2}}-\frac{1}{e^{t}+1}-%\frac{te^{-t}}{(1+e^{-t})^{2}}\right](s)caligraphic_L [ divide start_ARG 4 italic_e start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT roman_log ( italic_e start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT + 1 ) end_ARG start_ARG ( italic_e start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT - 1 ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG - divide start_ARG 4 italic_e start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT roman_log 2 end_ARG start_ARG ( italic_e start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT - 1 ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG - divide start_ARG 2 italic_t italic_e start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT end_ARG start_ARG ( italic_e start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT - 1 ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG - divide start_ARG 1 end_ARG start_ARG italic_e start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT + 1 end_ARG - divide start_ARG italic_t italic_e start_POSTSUPERSCRIPT - italic_t end_POSTSUPERSCRIPT end_ARG start_ARG ( 1 + italic_e start_POSTSUPERSCRIPT - italic_t end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ] ( italic_s )
=\displaystyle==โ„’โข[2โขet(etโˆ’1)2โข(2โขlogโก1+et2โˆ’t)โˆ’1+et+tโขet(et+1)2]โข(s).โ„’delimited-[]2superscript๐‘’๐‘กsuperscriptsuperscript๐‘’๐‘ก1221superscript๐‘’๐‘ก2๐‘ก1superscript๐‘’๐‘ก๐‘กsuperscript๐‘’๐‘กsuperscriptsuperscript๐‘’๐‘ก12๐‘ \displaystyle\mathcal{L}\left[\frac{2e^{t}}{(e^{t}-1)^{2}}\left(2\log\frac{1+e%^{t}}{2}-t\right)-\frac{1+e^{t}+te^{t}}{(e^{t}+1)^{2}}\right](s).caligraphic_L [ divide start_ARG 2 italic_e start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT end_ARG start_ARG ( italic_e start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT - 1 ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ( 2 roman_log divide start_ARG 1 + italic_e start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT end_ARG start_ARG 2 end_ARG - italic_t ) - divide start_ARG 1 + italic_e start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT + italic_t italic_e start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT end_ARG start_ARG ( italic_e start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT + 1 ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ] ( italic_s ) .

To understand the behavior of this expression, consider functions ฯˆ1subscript๐œ“1\psi_{1}italic_ฯˆ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and ฯˆ2subscript๐œ“2\psi_{2}italic_ฯˆ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT defined in Lemma2.1. This leads us to the relation

gโข(s)2โขs=โ„’โข[ฯˆ1โข(etโˆ’1)โˆ’ฯˆ2โข(etโˆ’1)]โข(s).๐‘”๐‘ 2๐‘ โ„’delimited-[]subscript๐œ“1superscript๐‘’๐‘ก1subscript๐œ“2superscript๐‘’๐‘ก1๐‘ \frac{g(s)}{2s}=\mathcal{L}\left[\psi_{1}(e^{t}-1)-\psi_{2}(e^{t}-1)\right](s).divide start_ARG italic_g ( italic_s ) end_ARG start_ARG 2 italic_s end_ARG = caligraphic_L [ italic_ฯˆ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_e start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT - 1 ) - italic_ฯˆ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_e start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT - 1 ) ] ( italic_s ) .

Lemma2.1 states that the pre-image โ„’โˆ’1โข[gโข(s)2โขs]superscriptโ„’1delimited-[]๐‘”๐‘ 2๐‘ \mathcal{L}^{-1}\!\!\left[\frac{g(s)}{2s}\right]caligraphic_L start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT [ divide start_ARG italic_g ( italic_s ) end_ARG start_ARG 2 italic_s end_ARG ] has a unique root for t>0๐‘ก0t>0italic_t > 0. Then gโข(s)2โขs<0๐‘”๐‘ 2๐‘ 0\frac{g(s)}{2s}<0divide start_ARG italic_g ( italic_s ) end_ARG start_ARG 2 italic_s end_ARG < 0 by Corollary2.3. So, inequality (2.4) holds, which completes the proof.โˆŽ

It is worth mentioning that Theorem2.4, in fact, presents certain properties of the values of the GauรŸ hypergeometric function at z=โˆ’1๐‘ง1z=-1italic_z = - 1 because functions ฮพjsubscript๐œ‰๐‘—\xi_{j}italic_ฮพ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT can be expressed by it.

Corollary 2.5.

Denote Fโข(s)=F12โข(1,s;s+1;โˆ’1)๐น๐‘ subscriptsubscript๐น121๐‘ ๐‘ 11F(s)={{}_{2}F_{1}}(1,s;s+1;-1)italic_F ( italic_s ) = start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT italic_F start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( 1 , italic_s ; italic_s + 1 ; - 1 ). The functions Fโข(s)๐น๐‘ F(s)italic_F ( italic_s ) and 1โˆ’Fโข(s)s1๐น๐‘ ๐‘ \frac{1-F(s)}{s}divide start_ARG 1 - italic_F ( italic_s ) end_ARG start_ARG italic_s end_ARG are decreasing while sโข(Fโข(s)โˆ’12)๐‘ ๐น๐‘ 12s\!\left(F(s)-\frac{1}{2}\right)italic_s ( italic_F ( italic_s ) - divide start_ARG 1 end_ARG start_ARG 2 end_ARG ) and 1โˆ’Fโข(s)sโข(2โขFโข(s)โˆ’1)1๐น๐‘ ๐‘ 2๐น๐‘ 1\frac{1-F(s)}{s\left(2F(s)-1\right)}divide start_ARG 1 - italic_F ( italic_s ) end_ARG start_ARG italic_s ( 2 italic_F ( italic_s ) - 1 ) end_ARG are increasing on (0,โˆž)0(0,\infty)( 0 , โˆž ). Moreover, the following sharp estimates hold:

12<Fโข(s)<1, 0<1โˆ’Fโข(s)s<lnโก2, 0<sโข(Fโข(s)โˆ’12)<14,lnโก2<1โˆ’Fโข(s)sโข(2โขFโข(s)โˆ’1)<1.formulae-sequence12๐น๐‘ 1 01๐น๐‘ ๐‘ 2 0๐‘ ๐น๐‘ 121421๐น๐‘ ๐‘ 2๐น๐‘ 11\frac{1}{2}<F(s)<1,\ \ 0<\frac{1-F(s)}{s}<\ln 2,\ \ 0<s\!\left(\!\!F(s)-\frac{%1}{2}\!\right)\!\!<\frac{1}{4},\ \ \ln 2<\frac{1-F(s)}{s\left(2F(s)-1\right)}<1.divide start_ARG 1 end_ARG start_ARG 2 end_ARG < italic_F ( italic_s ) < 1 , 0 < divide start_ARG 1 - italic_F ( italic_s ) end_ARG start_ARG italic_s end_ARG < roman_ln 2 , 0 < italic_s ( italic_F ( italic_s ) - divide start_ARG 1 end_ARG start_ARG 2 end_ARG ) < divide start_ARG 1 end_ARG start_ARG 4 end_ARG , roman_ln 2 < divide start_ARG 1 - italic_F ( italic_s ) end_ARG start_ARG italic_s ( 2 italic_F ( italic_s ) - 1 ) end_ARG < 1 .

3. A two-parameter family and inclusion property

Denote by ๐’œ๐’œ\mathcal{A}caligraphic_A the set of all holomorphic functions in the open unit disk ๐”ป๐”ป\mathbb{D}blackboard_D normalized by fโข(0)=fโ€ฒโข(0)โˆ’1=0๐‘“0superscript๐‘“โ€ฒ010f(0)=f^{\prime}(0)-1=0italic_f ( 0 ) = italic_f start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT ( 0 ) - 1 = 0. Let ฮฉ={(s,t):sโˆˆ[0,โˆž),tโˆˆ[0,1)}ฮฉconditional-set๐‘ ๐‘กformulae-sequence๐‘ 0๐‘ก01\Omega=\{(s,t):\,s\in[0,\infty),\,t\in[0,1)\}roman_ฮฉ = { ( italic_s , italic_t ) : italic_s โˆˆ [ 0 , โˆž ) , italic_t โˆˆ [ 0 , 1 ) }.From now on we are dealing with the two-parameter family ๐”„๐”„\mathfrak{A}fraktur_A consisting of the sets

๐”„st:={fโˆˆ๐’œ:Re[(sโˆ’1)โขfโข(z)z+fโ€ฒโข(z)]โ‰ฅsโขt,zโˆˆ๐”ปโˆ–{0}},(s,t)โˆˆฮฉยฏ,formulae-sequenceassignsuperscriptsubscript๐”„๐‘ ๐‘กconditional-set๐‘“๐’œformulae-sequenceRedelimited-[]๐‘ 1๐‘“๐‘ง๐‘งsuperscript๐‘“โ€ฒ๐‘ง๐‘ ๐‘ก๐‘ง๐”ป0๐‘ ๐‘กยฏฮฉ\mathfrak{A}_{s}^{t}:=\left\{f\in\mathcal{A}:\ \mathop{\rm Re}\nolimits\left[(%s-1)\frac{f(z)}{z}+f^{\prime}(z)\right]\geq st,\ z\in\mathbb{D}\setminus\{0\}%\right\},\quad(s,t)\in\overline{\Omega},fraktur_A start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT := { italic_f โˆˆ caligraphic_A : roman_Re [ ( italic_s - 1 ) divide start_ARG italic_f ( italic_z ) end_ARG start_ARG italic_z end_ARG + italic_f start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT ( italic_z ) ] โ‰ฅ italic_s italic_t , italic_z โˆˆ blackboard_D โˆ– { 0 } } , ( italic_s , italic_t ) โˆˆ overยฏ start_ARG roman_ฮฉ end_ARG ,(3.1)

and ๐”„โˆžt:={fโˆˆ๐’œ:Re[fโข(z)z]โ‰ฅt,zโˆˆ๐”ปโˆ–{0}}assignsuperscriptsubscript๐”„๐‘กconditional-set๐‘“๐’œformulae-sequenceRedelimited-[]๐‘“๐‘ง๐‘ง๐‘ก๐‘ง๐”ป0\mathfrak{A}_{\infty}^{t}:=\left\{f\in\mathcal{A}:\ \mathop{\rm Re}\nolimits%\left[\frac{f(z)}{z}\right]\geq t,\ z\in\mathbb{D}\setminus\{0\}\right\}fraktur_A start_POSTSUBSCRIPT โˆž end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT := { italic_f โˆˆ caligraphic_A : roman_Re [ divide start_ARG italic_f ( italic_z ) end_ARG start_ARG italic_z end_ARG ] โ‰ฅ italic_t , italic_z โˆˆ blackboard_D โˆ– { 0 } }.

These classes were introduced in[11], where an integral transform between different sets ๐”„stsuperscriptsubscript๐”„๐‘ ๐‘ก\mathfrak{A}_{s}^{t}fraktur_A start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT was established. The sets ๐”„1tsuperscriptsubscript๐”„1๐‘ก\mathfrak{A}_{1}^{t}fraktur_A start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT were studied even earlier in[8].Subsequently, in [4] we considered these classes with a different parametrization and found certain functions t=tโข(s)๐‘ก๐‘ก๐‘ t=t(s)italic_t = italic_t ( italic_s ) for which the sets ๐”„stโข(s)superscriptsubscript๐”„๐‘ ๐‘ก๐‘ \mathfrak{A}_{s}^{t(s)}fraktur_A start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t ( italic_s ) end_POSTSUPERSCRIPT form filtrations.

The following facts are evident.

Lemma 3.1.

For each (s,t)โˆˆฮฉยฏ๐‘ ๐‘กยฏฮฉ(s,t)\in\overline{\Omega}( italic_s , italic_t ) โˆˆ overยฏ start_ARG roman_ฮฉ end_ARG, the set ๐”„stsuperscriptsubscript๐”„๐‘ ๐‘ก\mathfrak{A}_{s}^{t}fraktur_A start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT is a convex body. Moreover,

  • (a)

    ๐”„0t=๐”„s1={Id}superscriptsubscript๐”„0๐‘กsuperscriptsubscript๐”„๐‘ 1Id\mathfrak{A}_{0}^{t}=\mathfrak{A}_{s}^{1}=\{\mathop{\rm Id}\nolimits\}fraktur_A start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT = fraktur_A start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT = { roman_Id };

  • (b)

    fโˆˆ๐”„โˆžtโ‡”fโข(z)โˆ’tโขz(1โˆ’t)โขzโˆˆ๐’žiff๐‘“superscriptsubscript๐”„๐‘ก๐‘“๐‘ง๐‘ก๐‘ง1๐‘ก๐‘ง๐’žf\in\mathfrak{A}_{\infty}^{t}\iff\frac{f(z)-tz}{(1-t)z}\in\mathcal{C}italic_f โˆˆ fraktur_A start_POSTSUBSCRIPT โˆž end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT โ‡” divide start_ARG italic_f ( italic_z ) - italic_t italic_z end_ARG start_ARG ( 1 - italic_t ) italic_z end_ARG โˆˆ caligraphic_C;

  • (c)

    if 0โ‰คt1<t2โ‰ค1 0subscript๐‘ก1subscript๐‘ก21\ 0\leq t_{1}<t_{2}\leq 10 โ‰ค italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT < italic_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT โ‰ค 1, then ๐”„st1โŠƒ๐”„st2superscriptsubscript๐”„๐‘ subscript๐‘ก2superscriptsubscript๐”„๐‘ subscript๐‘ก1\mathfrak{A}_{s}^{t_{1}}\supset\mathfrak{A}_{s}^{t_{2}}fraktur_A start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT โŠƒ fraktur_A start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT;

  • (d)

    if fโข(z)=zโขpโข(z)๐‘“๐‘ง๐‘ง๐‘๐‘งf(z)=zp(z)italic_f ( italic_z ) = italic_z italic_p ( italic_z ), then fโˆˆ๐”„stโ‡”Re[sโขpโข(z)+zโขpโ€ฒโข(z)]โ‰ฅsโขt,zโˆˆ๐”ปโ‡”๐‘“superscriptsubscript๐”„๐‘ ๐‘กformulae-sequenceRedelimited-[]๐‘ ๐‘๐‘ง๐‘งsuperscript๐‘โ€ฒ๐‘ง๐‘ ๐‘ก๐‘ง๐”ปf\in\mathfrak{A}_{s}^{t}\Leftrightarrow\mathop{\rm Re}\nolimits\left[sp(z)+zp^%{\prime}(z)\right]\geq st,\ z\in\mathbb{D}italic_f โˆˆ fraktur_A start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT โ‡” roman_Re [ italic_s italic_p ( italic_z ) + italic_z italic_p start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT ( italic_z ) ] โ‰ฅ italic_s italic_t , italic_z โˆˆ blackboard_D.

An additional useful property of the classes ๐”„stsuperscriptsubscript๐”„๐‘ ๐‘ก\mathfrak{A}_{s}^{t}fraktur_A start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT was established in [4]:

inffโˆˆ๐”„stinfzโˆˆ๐”ปRefโข(z)z=(1โˆ’t)โขฮพ0โข(s)+t.subscriptinfimum๐‘“superscriptsubscript๐”„๐‘ ๐‘กsubscriptinfimum๐‘ง๐”ปRe๐‘“๐‘ง๐‘ง1๐‘กsubscript๐œ‰0๐‘ ๐‘ก{\inf_{f\in\mathfrak{A}_{s}^{t}}\inf_{z\in\mathbb{D}}\mathop{\rm Re}\nolimits%\frac{f(z)}{z}=(1-t)\xi_{0}(s)+t.}roman_inf start_POSTSUBSCRIPT italic_f โˆˆ fraktur_A start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT end_POSTSUBSCRIPT roman_inf start_POSTSUBSCRIPT italic_z โˆˆ blackboard_D end_POSTSUBSCRIPT roman_Re divide start_ARG italic_f ( italic_z ) end_ARG start_ARG italic_z end_ARG = ( 1 - italic_t ) italic_ฮพ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_s ) + italic_t .

Since our primary focus of investigation is the family ๐”„๐”„\mathfrak{A}fraktur_A equipped with inclusion as the inherent partial order, this section is devoted to the subsequent relevant problem:

โˆ™โˆ™\bulletโˆ™ Given two sets ๐”„s1t1superscriptsubscript๐”„subscript๐‘ 1subscript๐‘ก1\mathfrak{A}_{s_{1}}^{t_{1}}fraktur_A start_POSTSUBSCRIPT italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT and ๐”„s2t2superscriptsubscript๐”„subscript๐‘ 2subscript๐‘ก2\mathfrak{A}_{s_{2}}^{t_{2}}fraktur_A start_POSTSUBSCRIPT italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT of the family (3.1), find conditions that entail or exclude the inclusion of one of them into the other.

Since the case s1=s2subscript๐‘ 1subscript๐‘ 2s_{1}=s_{2}italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT is covered by assertion (c) of Lemma3.1, we advance, without loss of generality, assuming that s1<s2subscript๐‘ 1subscript๐‘ 2s_{1}<s_{2}italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT < italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT.

Theorem 3.2.

Let 0โ‰คs1<s2,t1,t2โˆˆ[0,1)formulae-sequence0subscript๐‘ 1subscript๐‘ 2subscript๐‘ก1subscript๐‘ก2010\leq s_{1}<s_{2},\ t_{1},t_{2}\in[0,1)0 โ‰ค italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT < italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT โˆˆ [ 0 , 1 ). Then ๐”„s2t2โŠ„๐”„s1t1not-subset-ofsuperscriptsubscript๐”„subscript๐‘ 2subscript๐‘ก2superscriptsubscript๐”„subscript๐‘ 1subscript๐‘ก1\mathfrak{A}_{s_{2}}^{t_{2}}\not\subset\mathfrak{A}_{s_{1}}^{t_{1}}fraktur_A start_POSTSUBSCRIPT italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT โŠ„ fraktur_A start_POSTSUBSCRIPT italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT.

Proof.

By Lemma3.1 (c), ๐”„s1t1โŠ‚๐”„s10superscriptsubscript๐”„subscript๐‘ 1subscript๐‘ก1superscriptsubscript๐”„subscript๐‘ 10\mathfrak{A}_{s_{1}}^{t_{1}}\subset\mathfrak{A}_{s_{1}}^{0}fraktur_A start_POSTSUBSCRIPT italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT โŠ‚ fraktur_A start_POSTSUBSCRIPT italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT. Hence, to prove our result, it suffices to find fโˆˆ๐”„s2t2๐‘“superscriptsubscript๐”„subscript๐‘ 2subscript๐‘ก2f\in\mathfrak{A}_{s_{2}}^{t_{2}}italic_f โˆˆ fraktur_A start_POSTSUBSCRIPT italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT such that fโˆ‰๐”„s10๐‘“superscriptsubscript๐”„subscript๐‘ 10f\not\in\mathfrak{A}_{s_{1}}^{0}italic_f โˆ‰ fraktur_A start_POSTSUBSCRIPT italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT as s1<s2subscript๐‘ 1subscript๐‘ 2s_{1}<s_{2}italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT < italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT.

Let us define the function p๐‘pitalic_p as follows

pโข(z)=1+2โข(1โˆ’t)โข[F12โข(1,s2;s2+1;z)โˆ’1]=1+2โข(1โˆ’t)โขโˆ‘nโ‰ฅ1s2s2+nโขzn.๐‘๐‘ง121๐‘กdelimited-[]subscriptsubscript๐น121subscript๐‘ 2subscript๐‘ 21๐‘ง1121๐‘กsubscript๐‘›1subscript๐‘ 2subscript๐‘ 2๐‘›superscript๐‘ง๐‘›\displaystyle p(z)=1+2(1-t)\left[{{}_{2}F_{1}}(1,s_{2};s_{2}+1;z)-1\right]=1+2%(1-t)\sum_{n\geq 1}\frac{s_{2}}{s_{2}+n}z^{n}.italic_p ( italic_z ) = 1 + 2 ( 1 - italic_t ) [ start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT italic_F start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( 1 , italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ; italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT + 1 ; italic_z ) - 1 ] = 1 + 2 ( 1 - italic_t ) โˆ‘ start_POSTSUBSCRIPT italic_n โ‰ฅ 1 end_POSTSUBSCRIPT divide start_ARG italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_ARG start_ARG italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT + italic_n end_ARG italic_z start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT .(3.2)

Formula (3.2) yields

pโข(z)+1s2โขzโขpโ€ฒโข(z)=1+2โข(1โˆ’t)โขz1โˆ’z.๐‘๐‘ง1subscript๐‘ 2๐‘งsuperscript๐‘โ€ฒ๐‘ง121๐‘ก๐‘ง1๐‘งp(z)+\frac{1}{s_{2}}zp^{\prime}(z)=1+2(1-t)\frac{z}{1-z}.italic_p ( italic_z ) + divide start_ARG 1 end_ARG start_ARG italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_ARG italic_z italic_p start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT ( italic_z ) = 1 + 2 ( 1 - italic_t ) divide start_ARG italic_z end_ARG start_ARG 1 - italic_z end_ARG .(3.3)

Since the function w=z1โˆ’z๐‘ค๐‘ง1๐‘งw=\frac{z}{1-z}italic_w = divide start_ARG italic_z end_ARG start_ARG 1 - italic_z end_ARG maps the open unit disk ๐”ป๐”ป\mathbb{D}blackboard_D onto the half-plane Rew>โˆ’12Re๐‘ค12\mathop{\rm Re}\nolimits w>-\frac{1}{2}roman_Re italic_w > - divide start_ARG 1 end_ARG start_ARG 2 end_ARG, we conclude that infzโˆˆ๐”ปRe[pโข(z)+1s2โขzโขpโ€ฒโข(z)]=tsubscriptinfimum๐‘ง๐”ปRedelimited-[]๐‘๐‘ง1subscript๐‘ 2๐‘งsuperscript๐‘โ€ฒ๐‘ง๐‘ก\inf_{z\in\mathbb{D}}\mathop{\rm Re}\nolimits\left[p(z)+\frac{1}{s_{2}}zp^{%\prime}(z)\right]=troman_inf start_POSTSUBSCRIPT italic_z โˆˆ blackboard_D end_POSTSUBSCRIPT roman_Re [ italic_p ( italic_z ) + divide start_ARG 1 end_ARG start_ARG italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_ARG italic_z italic_p start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT ( italic_z ) ] = italic_t. Thus the function f๐‘“fitalic_f defined by fโข(z)=zโขpโข(z)๐‘“๐‘ง๐‘ง๐‘๐‘งf(z)=zp(z)italic_f ( italic_z ) = italic_z italic_p ( italic_z ) belongs to ๐”„s2t2superscriptsubscript๐”„subscript๐‘ 2subscript๐‘ก2\mathfrak{A}_{s_{2}}^{t_{2}}fraktur_A start_POSTSUBSCRIPT italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT by Lemma3.1(d).

To show that fโˆ‰๐”„s10๐‘“superscriptsubscript๐”„subscript๐‘ 10f\not\in\mathfrak{A}_{s_{1}}^{0}italic_f โˆ‰ fraktur_A start_POSTSUBSCRIPT italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT, let us consider the expression

pโข(z)+1s1โขzโขpโ€ฒโข(z)=(pโข(z)+1s2โขzโขpโ€ฒโข(z))+(1s1โˆ’1s2)โขzโขpโ€ฒโข(z).๐‘๐‘ง1subscript๐‘ 1๐‘งsuperscript๐‘โ€ฒ๐‘ง๐‘๐‘ง1subscript๐‘ 2๐‘งsuperscript๐‘โ€ฒ๐‘ง1subscript๐‘ 11subscript๐‘ 2๐‘งsuperscript๐‘โ€ฒ๐‘งp(z)+\frac{1}{s_{1}}zp^{\prime}(z)=\left(p(z)+\frac{1}{s_{2}}zp^{\prime}(z)%\right)+\left(\frac{1}{s_{1}}-\frac{1}{s_{2}}\right)zp^{\prime}(z).italic_p ( italic_z ) + divide start_ARG 1 end_ARG start_ARG italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG italic_z italic_p start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT ( italic_z ) = ( italic_p ( italic_z ) + divide start_ARG 1 end_ARG start_ARG italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_ARG italic_z italic_p start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT ( italic_z ) ) + ( divide start_ARG 1 end_ARG start_ARG italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG - divide start_ARG 1 end_ARG start_ARG italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_ARG ) italic_z italic_p start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT ( italic_z ) .

We already know that the boundary values of Re(pโข(z)+1s2โขzโขpโ€ฒโข(z))Re๐‘๐‘ง1subscript๐‘ 2๐‘งsuperscript๐‘โ€ฒ๐‘ง\mathop{\rm Re}\nolimits\left(p(z)+\frac{1}{s_{2}}zp^{\prime}(z)\right)roman_Re ( italic_p ( italic_z ) + divide start_ARG 1 end_ARG start_ARG italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_ARG italic_z italic_p start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT ( italic_z ) ) equals t๐‘กtitalic_t.Since s1subscript๐‘ 1s_{1}italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT less than s2subscript๐‘ 2s_{2}italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT is arbitrary, it is enough to verify that the following claim holds:

Claim: infzโˆˆ๐”ปRe[zโขpโ€ฒโข(z)]=โˆ’โˆž.subscriptinfimum๐‘ง๐”ปRedelimited-[]๐‘งsuperscript๐‘โ€ฒ๐‘ง\inf_{z\in\mathbb{D}}\mathop{\rm Re}\nolimits\left[zp^{\prime}(z)\right]=-\infty.roman_inf start_POSTSUBSCRIPT italic_z โˆˆ blackboard_D end_POSTSUBSCRIPT roman_Re [ italic_z italic_p start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT ( italic_z ) ] = - โˆž .111It seems that formula(B18) in the book [9] implies limzโ†’1Re[zโขpโ€ฒโข(z)]=โˆžsubscriptโ†’๐‘ง1Redelimited-[]๐‘งsuperscript๐‘โ€ฒ๐‘ง\lim_{z\to 1}\mathop{\rm Re}\nolimits\left[zp^{\prime}(z)\right]=\inftyroman_lim start_POSTSUBSCRIPT italic_z โ†’ 1 end_POSTSUBSCRIPT roman_Re [ italic_z italic_p start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT ( italic_z ) ] = โˆž, which contradicts our claim. In this connection we notice that the last formula is correct in the non-tangential sense only.

Indeed, function p๐‘pitalic_p defined by (3.2) can be represented by

pโข(z)=2โขtโˆ’1+2โข(1โˆ’t)โขโˆซ01s2โขxs2โˆ’1โขdโขx1โˆ’zโขx,๐‘๐‘ง2๐‘ก121๐‘กsuperscriptsubscript01subscript๐‘ 2superscript๐‘ฅsubscript๐‘ 21๐‘‘๐‘ฅ1๐‘ง๐‘ฅp(z)=2t-1+2(1-t)\int_{0}^{1}\frac{{s_{2}}x^{{s_{2}}-1}dx}{1-zx},italic_p ( italic_z ) = 2 italic_t - 1 + 2 ( 1 - italic_t ) โˆซ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT divide start_ARG italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_x start_POSTSUPERSCRIPT italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT - 1 end_POSTSUPERSCRIPT italic_d italic_x end_ARG start_ARG 1 - italic_z italic_x end_ARG ,

see (2.1). Combining this with (3.3), one concludes

s2โขzโขpโ€ฒโข(z)subscript๐‘ 2๐‘งsuperscript๐‘โ€ฒ๐‘ง\displaystyle{s_{2}}zp^{\prime}(z)italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_z italic_p start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT ( italic_z )=\displaystyle==[1+2โข(1โˆ’t)โขz1โˆ’z]โˆ’[2โขtโˆ’1+2โข(1โˆ’t)โขโˆซ01s2โขxs2โˆ’1โขdโขx1โˆ’zโขx]delimited-[]121๐‘ก๐‘ง1๐‘งdelimited-[]2๐‘ก121๐‘กsuperscriptsubscript01subscript๐‘ 2superscript๐‘ฅsubscript๐‘ 21๐‘‘๐‘ฅ1๐‘ง๐‘ฅ\displaystyle\left[1+2(1-t)\frac{z}{1-z}\right]-\left[2t-1+2(1-t)\int_{0}^{1}%\frac{{s_{2}}x^{{s_{2}}-1}dx}{1-zx}\right][ 1 + 2 ( 1 - italic_t ) divide start_ARG italic_z end_ARG start_ARG 1 - italic_z end_ARG ] - [ 2 italic_t - 1 + 2 ( 1 - italic_t ) โˆซ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT divide start_ARG italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_x start_POSTSUPERSCRIPT italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT - 1 end_POSTSUPERSCRIPT italic_d italic_x end_ARG start_ARG 1 - italic_z italic_x end_ARG ]
=\displaystyle==2โข(1โˆ’t)โข[1+z1โˆ’zโˆ’โˆซ01s2โขxs2โˆ’1โขdโขx1โˆ’zโขx]21๐‘กdelimited-[]1๐‘ง1๐‘งsuperscriptsubscript01subscript๐‘ 2superscript๐‘ฅsubscript๐‘ 21๐‘‘๐‘ฅ1๐‘ง๐‘ฅ\displaystyle 2(1-t)\left[1+\frac{z}{1-z}-\int_{0}^{1}\frac{{s_{2}}x^{{s_{2}}-%1}dx}{1-zx}\right]2 ( 1 - italic_t ) [ 1 + divide start_ARG italic_z end_ARG start_ARG 1 - italic_z end_ARG - โˆซ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT divide start_ARG italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_x start_POSTSUPERSCRIPT italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT - 1 end_POSTSUPERSCRIPT italic_d italic_x end_ARG start_ARG 1 - italic_z italic_x end_ARG ]
=\displaystyle==2โข(1โˆ’t)โขโˆซ01(11โˆ’zโˆ’11โˆ’zโขx)โขs2โขxs2โˆ’1โข๐‘‘x21๐‘กsuperscriptsubscript0111๐‘ง11๐‘ง๐‘ฅsubscript๐‘ 2superscript๐‘ฅsubscript๐‘ 21differential-d๐‘ฅ\displaystyle 2(1-t)\int_{0}^{1}\left(\frac{1}{1-z}-\frac{1}{1-zx}\right){s_{2%}}x^{{s_{2}}-1}dx2 ( 1 - italic_t ) โˆซ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT ( divide start_ARG 1 end_ARG start_ARG 1 - italic_z end_ARG - divide start_ARG 1 end_ARG start_ARG 1 - italic_z italic_x end_ARG ) italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_x start_POSTSUPERSCRIPT italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT - 1 end_POSTSUPERSCRIPT italic_d italic_x
=\displaystyle==2โข(1โˆ’t)โขโˆซ01zโข(1โˆ’x)(1โˆ’z)โข(1โˆ’zโขx)โขs2โขxs2โˆ’1โข๐‘‘x.21๐‘กsuperscriptsubscript01๐‘ง1๐‘ฅ1๐‘ง1๐‘ง๐‘ฅsubscript๐‘ 2superscript๐‘ฅsubscript๐‘ 21differential-d๐‘ฅ\displaystyle 2(1-t)\int_{0}^{1}\frac{z(1-x)}{(1-z)(1-zx)}\,{s_{2}}x^{{s_{2}}-%1}dx.2 ( 1 - italic_t ) โˆซ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT divide start_ARG italic_z ( 1 - italic_x ) end_ARG start_ARG ( 1 - italic_z ) ( 1 - italic_z italic_x ) end_ARG italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_x start_POSTSUPERSCRIPT italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT - 1 end_POSTSUPERSCRIPT italic_d italic_x .

Because the hypergeometric function F12โข(1,s2;s2+1;z)subscriptsubscript๐น121subscript๐‘ 2subscript๐‘ 21๐‘ง{{}_{2}F_{1}}(1,{s_{2}};{s_{2}}+1;z)start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT italic_F start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( 1 , italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ; italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT + 1 ; italic_z ) (and hence p๐‘pitalic_p) can be analytically extended at any boundary point zโˆˆโˆ‚๐”ป๐‘ง๐”ปz\in\partial\mathbb{D}italic_z โˆˆ โˆ‚ blackboard_D excepting z=1๐‘ง1z=1italic_z = 1, we can put in the last formula z=eiโขฯ•,ฯ•โ‰ 0formulae-sequence๐‘งsuperscript๐‘’๐‘–italic-ฯ•italic-ฯ•0z=e^{i\phi},\ \phi\neq 0italic_z = italic_e start_POSTSUPERSCRIPT italic_i italic_ฯ• end_POSTSUPERSCRIPT , italic_ฯ• โ‰  0. In this case we get

โˆ’s21โˆ’tโขRezโขpโ€ฒโข(z)|z=eiโขฯ•evaluated-atsubscript๐‘ 21๐‘กRe๐‘งsuperscript๐‘โ€ฒ๐‘ง๐‘งsuperscript๐‘’๐‘–italic-ฯ•\displaystyle-\frac{{s_{2}}}{1-t}\mathop{\rm Re}\nolimits\left.zp^{\prime}(z)%\right|_{z=e^{i\phi}}- divide start_ARG italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_ARG start_ARG 1 - italic_t end_ARG roman_Re italic_z italic_p start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT ( italic_z ) | start_POSTSUBSCRIPT italic_z = italic_e start_POSTSUPERSCRIPT italic_i italic_ฯ• end_POSTSUPERSCRIPT end_POSTSUBSCRIPT=\displaystyle==โˆ’2โขReโˆซ01eiโขฯ•โข(1โˆ’x)(1โˆ’eiโขฯ•)โข(1โˆ’eiโขฯ•โขx)โขs2โขxs2โˆ’1โข๐‘‘x2Resuperscriptsubscript01superscript๐‘’๐‘–italic-ฯ•1๐‘ฅ1superscript๐‘’๐‘–italic-ฯ•1superscript๐‘’๐‘–italic-ฯ•๐‘ฅsubscript๐‘ 2superscript๐‘ฅsubscript๐‘ 21differential-d๐‘ฅ\displaystyle-2\mathop{\rm Re}\nolimits\int_{0}^{1}\frac{e^{i\phi}(1-x)}{(1-e^%{i\phi})(1-e^{i\phi}x)}\,{s_{2}}x^{{s_{2}}-1}dx- 2 roman_Re โˆซ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT divide start_ARG italic_e start_POSTSUPERSCRIPT italic_i italic_ฯ• end_POSTSUPERSCRIPT ( 1 - italic_x ) end_ARG start_ARG ( 1 - italic_e start_POSTSUPERSCRIPT italic_i italic_ฯ• end_POSTSUPERSCRIPT ) ( 1 - italic_e start_POSTSUPERSCRIPT italic_i italic_ฯ• end_POSTSUPERSCRIPT italic_x ) end_ARG italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_x start_POSTSUPERSCRIPT italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT - 1 end_POSTSUPERSCRIPT italic_d italic_x
=\displaystyle==โˆ’2โขโˆซ01Re(eiโขฯ•โˆ’1)โข(1โˆ’eโˆ’iโขฯ•โขx)โข(1โˆ’x)|1โˆ’eiโขฯ•|2โข|1โˆ’eiโขฯ•โขx|2โขs2โขxs2โˆ’1โขdโขx2superscriptsubscript01Resuperscript๐‘’๐‘–italic-ฯ•11superscript๐‘’๐‘–italic-ฯ•๐‘ฅ1๐‘ฅsuperscript1superscript๐‘’๐‘–italic-ฯ•2superscript1superscript๐‘’๐‘–italic-ฯ•๐‘ฅ2subscript๐‘ 2superscript๐‘ฅsubscript๐‘ 21๐‘‘๐‘ฅ\displaystyle-2\int_{0}^{1}\mathop{\rm Re}\nolimits\frac{(e^{i\phi}-1)(1-e^{-i%\phi}x)(1-x)}{|1-e^{i\phi}|^{2}|1-e^{i\phi}x|^{2}}\,{s_{2}}x^{{s_{2}}-1}dx- 2 โˆซ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT roman_Re divide start_ARG ( italic_e start_POSTSUPERSCRIPT italic_i italic_ฯ• end_POSTSUPERSCRIPT - 1 ) ( 1 - italic_e start_POSTSUPERSCRIPT - italic_i italic_ฯ• end_POSTSUPERSCRIPT italic_x ) ( 1 - italic_x ) end_ARG start_ARG | 1 - italic_e start_POSTSUPERSCRIPT italic_i italic_ฯ• end_POSTSUPERSCRIPT | start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT | 1 - italic_e start_POSTSUPERSCRIPT italic_i italic_ฯ• end_POSTSUPERSCRIPT italic_x | start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_x start_POSTSUPERSCRIPT italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT - 1 end_POSTSUPERSCRIPT italic_d italic_x
=\displaystyle==โˆซ011โˆ’x2|1โˆ’eiโขฯ•โขx|2โขs2โขxs2โˆ’1โข๐‘‘x.superscriptsubscript011superscript๐‘ฅ2superscript1superscript๐‘’๐‘–italic-ฯ•๐‘ฅ2subscript๐‘ 2superscript๐‘ฅsubscript๐‘ 21differential-d๐‘ฅ\displaystyle\int_{0}^{1}\frac{1-x^{2}}{|1-e^{i\phi}x|^{2}}\,{s_{2}}x^{{s_{2}}%-1}dx.โˆซ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT divide start_ARG 1 - italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG | 1 - italic_e start_POSTSUPERSCRIPT italic_i italic_ฯ• end_POSTSUPERSCRIPT italic_x | start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_x start_POSTSUPERSCRIPT italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT - 1 end_POSTSUPERSCRIPT italic_d italic_x .

Denote ฮฑs:=minโก{sโขxsโˆ’1:xโˆˆ[12,1]}assignsubscript๐›ผ๐‘ :๐‘ superscript๐‘ฅ๐‘ 1๐‘ฅ121\alpha_{s}:=\min\left\{sx^{s-1}:\ x\in\left[\frac{1}{2},1\right]\right\}italic_ฮฑ start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT := roman_min { italic_s italic_x start_POSTSUPERSCRIPT italic_s - 1 end_POSTSUPERSCRIPT : italic_x โˆˆ [ divide start_ARG 1 end_ARG start_ARG 2 end_ARG , 1 ] }. Using this notation, we have

โˆ’s21โˆ’tโขRezโขpโ€ฒโข(z)|z=eiโขฯ•โ‰ฅโˆซ1211โˆ’x2|1โˆ’eiโขฯ•โขx|2โขs2โขxs2โˆ’1โข๐‘‘xโ‰ฅฮฑs2โขโˆซ1211โˆ’x21+x2โˆ’2โขxโขcosโกฯ•โข๐‘‘x.evaluated-atsubscript๐‘ 21๐‘กRe๐‘งsuperscript๐‘โ€ฒ๐‘ง๐‘งsuperscript๐‘’๐‘–italic-ฯ•superscriptsubscript1211superscript๐‘ฅ2superscript1superscript๐‘’๐‘–italic-ฯ•๐‘ฅ2subscript๐‘ 2superscript๐‘ฅsubscript๐‘ 21differential-d๐‘ฅsubscript๐›ผsubscript๐‘ 2superscriptsubscript1211superscript๐‘ฅ21superscript๐‘ฅ22๐‘ฅitalic-ฯ•differential-d๐‘ฅ\displaystyle-\frac{{s_{2}}}{1-t}\mathop{\rm Re}\nolimits\left.zp^{\prime}(z)%\right|_{z=e^{i\phi}}\geq\int_{\frac{1}{2}}^{1}\frac{1-x^{2}}{|1-e^{i\phi}x|^{%2}}\,{s_{2}}x^{{s_{2}}-1}dx\geq\alpha_{s_{2}}\int_{\frac{1}{2}}^{1}\frac{1-x^{%2}}{1+x^{2}-2x\cos\phi}\,dx.- divide start_ARG italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_ARG start_ARG 1 - italic_t end_ARG roman_Re italic_z italic_p start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT ( italic_z ) | start_POSTSUBSCRIPT italic_z = italic_e start_POSTSUPERSCRIPT italic_i italic_ฯ• end_POSTSUPERSCRIPT end_POSTSUBSCRIPT โ‰ฅ โˆซ start_POSTSUBSCRIPT divide start_ARG 1 end_ARG start_ARG 2 end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT divide start_ARG 1 - italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG | 1 - italic_e start_POSTSUPERSCRIPT italic_i italic_ฯ• end_POSTSUPERSCRIPT italic_x | start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_x start_POSTSUPERSCRIPT italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT - 1 end_POSTSUPERSCRIPT italic_d italic_x โ‰ฅ italic_ฮฑ start_POSTSUBSCRIPT italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT โˆซ start_POSTSUBSCRIPT divide start_ARG 1 end_ARG start_ARG 2 end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT divide start_ARG 1 - italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 1 + italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - 2 italic_x roman_cos italic_ฯ• end_ARG italic_d italic_x .

Using the elementary calculus tools we get

โˆซ1211โˆ’x21+x2โˆ’2โขxโขcosโกฯ•โข๐‘‘x=โˆ’cosโกฯ•โ‹…lnโก(1โˆ’cosโกฯ•)+Aโข(ฯ•),superscriptsubscript1211superscript๐‘ฅ21superscript๐‘ฅ22๐‘ฅitalic-ฯ•differential-d๐‘ฅโ‹…italic-ฯ•1italic-ฯ•๐ดitalic-ฯ•\int_{\frac{1}{2}}^{1}\frac{1-x^{2}}{1+x^{2}-2x\cos\phi}\,dx=-\cos\phi\cdot\ln%(1-\cos\phi)+A(\phi),โˆซ start_POSTSUBSCRIPT divide start_ARG 1 end_ARG start_ARG 2 end_ARG end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT divide start_ARG 1 - italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 1 + italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - 2 italic_x roman_cos italic_ฯ• end_ARG italic_d italic_x = - roman_cos italic_ฯ• โ‹… roman_ln ( 1 - roman_cos italic_ฯ• ) + italic_A ( italic_ฯ• ) ,

where Aโข(ฯ•)๐ดitalic-ฯ•A(\phi)italic_A ( italic_ฯ• ) is a bounded function.Therefore this integral tends to infinity as ฯ•โ†’0โ†’italic-ฯ•0\phi\to 0italic_ฯ• โ†’ 0. So, our Claim holds, which completes the proof.โˆŽ

Thus, due to Theorem3.2, the inclusion ๐”„s2t2โŠ‚๐”„s1t1superscriptsubscript๐”„subscript๐‘ 2subscript๐‘ก2superscriptsubscript๐”„subscript๐‘ 1subscript๐‘ก1\mathfrak{A}_{s_{2}}^{t_{2}}\subset\mathfrak{A}_{s_{1}}^{t_{1}}fraktur_A start_POSTSUBSCRIPT italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT โŠ‚ fraktur_A start_POSTSUBSCRIPT italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT is impossible when s1<s2subscript๐‘ 1subscript๐‘ 2s_{1}<s_{2}italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT < italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT. We present conditions ensuring the opposite inclusion that involve function ฮพ0subscript๐œ‰0\xi_{0}italic_ฮพ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT defined by(2.2).

Theorem 3.3.

Let (s1,t1)โˆˆฮฉsubscript๐‘ 1subscript๐‘ก1ฮฉ(s_{1},t_{1})\in\Omega( italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) โˆˆ roman_ฮฉ and s1<s2subscript๐‘ 1subscript๐‘ 2s_{1}<s_{2}italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT < italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT.

  • (i)

    If t2=t1+(1โˆ’t1)โข(1โˆ’s1s2)โขฮพ0โข(s1),subscript๐‘ก2subscript๐‘ก11subscript๐‘ก11subscript๐‘ 1subscript๐‘ 2subscript๐œ‰0subscript๐‘ 1t_{2}=t_{1}+(1-t_{1})\left(1-\frac{s_{1}}{s_{2}}\right)\xi_{0}(s_{1}),italic_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + ( 1 - italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) ( 1 - divide start_ARG italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG start_ARG italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_ARG ) italic_ฮพ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) , then inclusion ๐”„s1t1โŠ‚๐”„s2t2superscriptsubscript๐”„subscript๐‘ 1subscript๐‘ก1superscriptsubscript๐”„subscript๐‘ 2subscript๐‘ก2\mathfrak{A}_{s_{1}}^{t_{1}}\subset\mathfrak{A}_{s_{2}}^{t_{2}}fraktur_A start_POSTSUBSCRIPT italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT โŠ‚ fraktur_A start_POSTSUBSCRIPT italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT holds and is sharp in the sense that ๐”„s1t1โŠ„๐”„s2tnot-subset-ofsuperscriptsubscript๐”„subscript๐‘ 1subscript๐‘ก1superscriptsubscript๐”„subscript๐‘ 2๐‘ก\mathfrak{A}_{s_{1}}^{t_{1}}\not\subset\mathfrak{A}_{s_{2}}^{t}fraktur_A start_POSTSUBSCRIPT italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT โŠ„ fraktur_A start_POSTSUBSCRIPT italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT whenevert>t2๐‘กsubscript๐‘ก2t>t_{2}italic_t > italic_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT.

  • (ii)

    If ๐”„s1t1โŠ‚๐”„s2t2superscriptsubscript๐”„subscript๐‘ 1subscript๐‘ก1superscriptsubscript๐”„subscript๐‘ 2subscript๐‘ก2\mathfrak{A}_{s_{1}}^{t_{1}}\subset\mathfrak{A}_{s_{2}}^{t_{2}}fraktur_A start_POSTSUBSCRIPT italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT โŠ‚ fraktur_A start_POSTSUBSCRIPT italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT, then t2โ‰คt1+(1โˆ’t1)โข(1โˆ’s1s2)โขฮพ0โข(s1).subscript๐‘ก2subscript๐‘ก11subscript๐‘ก11subscript๐‘ 1subscript๐‘ 2subscript๐œ‰0subscript๐‘ 1t_{2}\leq t_{1}+(1-t_{1})\left(1-\frac{s_{1}}{s_{2}}\right)\xi_{0}(s_{1}).italic_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT โ‰ค italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + ( 1 - italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) ( 1 - divide start_ARG italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG start_ARG italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_ARG ) italic_ฮพ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) . Consequently, (1โˆ’t2)โขs2โ‰ฅ(1โˆ’t1)โขs11subscript๐‘ก2subscript๐‘ 21subscript๐‘ก1subscript๐‘ 1(1-t_{2})s_{2}\geq(1-t_{1})s_{1}( 1 - italic_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT โ‰ฅ ( 1 - italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT.

  • (iii)

    In addition, if s0โˆˆ[0,s1)subscript๐‘ 00subscript๐‘ 1s_{0}\in[0,s_{1})italic_s start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT โˆˆ [ 0 , italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ), t0,t2โˆˆ[0,1)subscript๐‘ก0subscript๐‘ก201\,t_{0},t_{2}\in[0,1)italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT โˆˆ [ 0 , 1 ) and the inclusions ๐”„s0t0โŠ‚๐”„s1t1โŠ‚๐”„s2t2superscriptsubscript๐”„subscript๐‘ 0subscript๐‘ก0superscriptsubscript๐”„subscript๐‘ 1subscript๐‘ก1superscriptsubscript๐”„subscript๐‘ 2subscript๐‘ก2\mathfrak{A}_{s_{0}}^{t_{0}}\subset\mathfrak{A}_{s_{1}}^{t_{1}}\subset%\mathfrak{A}_{s_{2}}^{t_{2}}fraktur_A start_POSTSUBSCRIPT italic_s start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT โŠ‚ fraktur_A start_POSTSUBSCRIPT italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT โŠ‚ fraktur_A start_POSTSUBSCRIPT italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT hold, then the inclusion ๐”„s0t0โŠ‚๐”„s2t2superscriptsubscript๐”„subscript๐‘ 0subscript๐‘ก0superscriptsubscript๐”„subscript๐‘ 2subscript๐‘ก2\mathfrak{A}_{s_{0}}^{t_{0}}\subset\mathfrak{A}_{s_{2}}^{t_{2}}fraktur_A start_POSTSUBSCRIPT italic_s start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT โŠ‚ fraktur_A start_POSTSUBSCRIPT italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT is not sharp.

Proof.

By (3.1), the identity mapping belongs to all classes ๐”„stsuperscriptsubscript๐”„๐‘ ๐‘ก\mathfrak{A}_{s}^{t}fraktur_A start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT.Let fโˆˆ๐”„s1t1,fโ‰ Idformulae-sequence๐‘“superscriptsubscript๐”„subscript๐‘ 1subscript๐‘ก1๐‘“Idf\in\mathfrak{A}_{s_{1}}^{t_{1}},\ f\neq\mathop{\rm Id}\nolimitsitalic_f โˆˆ fraktur_A start_POSTSUBSCRIPT italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT , italic_f โ‰  roman_Id. (So, s1โ‰ 0subscript๐‘ 10s_{1}\neq 0italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT โ‰  0 by Lemma3.1 (a).) This function can be represented in the form fโข(z)=zโขpโข(z)๐‘“๐‘ง๐‘ง๐‘๐‘งf(z)=zp(z)italic_f ( italic_z ) = italic_z italic_p ( italic_z ). It follows from Lemma3.1 (d) that function p๐‘pitalic_p satisfies the inequality

Re(s1โขpโข(z)+zโขpโ€ฒโข(z))โ‰ฅs1โขt1.Resubscript๐‘ 1๐‘๐‘ง๐‘งsuperscript๐‘โ€ฒ๐‘งsubscript๐‘ 1subscript๐‘ก1\mathop{\rm Re}\nolimits\left(s_{1}p(z)+zp^{\prime}(z)\right)\geq s_{1}t_{1}.roman_Re ( italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_p ( italic_z ) + italic_z italic_p start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT ( italic_z ) ) โ‰ฅ italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT .(3.4)

Therefore, the function q๐‘žqitalic_q defined by qโข(z):=s1โขpโข(z)+zโขpโ€ฒโข(z)โˆ’s1โขt1s1โข(1โˆ’t1)assign๐‘ž๐‘งsubscript๐‘ 1๐‘๐‘ง๐‘งsuperscript๐‘โ€ฒ๐‘งsubscript๐‘ 1subscript๐‘ก1subscript๐‘ 11subscript๐‘ก1q(z):=\frac{s_{1}p(z)+zp^{\prime}(z)-s_{1}t_{1}}{s_{1}(1-t_{1})}italic_q ( italic_z ) := divide start_ARG italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_p ( italic_z ) + italic_z italic_p start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT ( italic_z ) - italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG start_ARG italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( 1 - italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) end_ARG satisfies Reqโข(z)โ‰ฅ0Re๐‘ž๐‘ง0\mathop{\rm Re}\nolimits q(z)\geq 0roman_Re italic_q ( italic_z ) โ‰ฅ 0 for all zโˆˆ๐”ป๐‘ง๐”ปz\in\mathbb{D}italic_z โˆˆ blackboard_D and qโข(0)=1๐‘ž01q(0)=1italic_q ( 0 ) = 1. Then

s1p(z)+zpโ€ฒ(z)=s1(t1+(1โˆ’t1)q(z))=:q1(z).s_{1}p(z)+zp^{\prime}(z)=s_{1}\left(t_{1}+(1-t_{1})q(z)\right)=:q_{1}(z).italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_p ( italic_z ) + italic_z italic_p start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT ( italic_z ) = italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + ( 1 - italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) italic_q ( italic_z ) ) = : italic_q start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_z ) .

Function p๐‘pitalic_p being the solution of this differential equation is

pโข(z)=โˆซ01q1โข(xโขz)โขxs1โˆ’1โข๐‘‘x=t1+(1โˆ’t1)โขโˆซ01qโข(xโขz)โขs1โขxs1โˆ’1โข๐‘‘x.๐‘๐‘งsuperscriptsubscript01subscript๐‘ž1๐‘ฅ๐‘งsuperscript๐‘ฅsubscript๐‘ 11differential-d๐‘ฅsubscript๐‘ก11subscript๐‘ก1superscriptsubscript01๐‘ž๐‘ฅ๐‘งsubscript๐‘ 1superscript๐‘ฅsubscript๐‘ 11differential-d๐‘ฅ\displaystyle p(z)=\int\limits_{0}^{1}q_{1}\left(xz\right)x^{s_{1}-1}dx=t_{1}+%(1-t_{1})\int\limits_{0}^{1}q\left(xz\right)s_{1}x^{s_{1}-1}dx.italic_p ( italic_z ) = โˆซ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT italic_q start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_x italic_z ) italic_x start_POSTSUPERSCRIPT italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT - 1 end_POSTSUPERSCRIPT italic_d italic_x = italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + ( 1 - italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) โˆซ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT italic_q ( italic_x italic_z ) italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_x start_POSTSUPERSCRIPT italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT - 1 end_POSTSUPERSCRIPT italic_d italic_x .(3.5)

By Harnackโ€™s inequality,

Repโข(z)โ‰ฅt1+(1โˆ’t1)โขโˆซ011โˆ’xโข|z|1+xโข|z|โขs1โขxs1โˆ’1โข๐‘‘x.Re๐‘๐‘งsubscript๐‘ก11subscript๐‘ก1superscriptsubscript011๐‘ฅ๐‘ง1๐‘ฅ๐‘งsubscript๐‘ 1superscript๐‘ฅsubscript๐‘ 11differential-d๐‘ฅ\displaystyle\mathop{\rm Re}\nolimits p(z)\geq t_{1}+(1-t_{1})\int\limits_{0}^%{1}\frac{1-x|z|}{1+x|z|}\,s_{1}x^{s_{1}-1}dx.roman_Re italic_p ( italic_z ) โ‰ฅ italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + ( 1 - italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) โˆซ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT divide start_ARG 1 - italic_x | italic_z | end_ARG start_ARG 1 + italic_x | italic_z | end_ARG italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_x start_POSTSUPERSCRIPT italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT - 1 end_POSTSUPERSCRIPT italic_d italic_x .

This inequality and (3.4) imply

Re(s2โขpโข(z)+zโขpโ€ฒโข(z))Resubscript๐‘ 2๐‘๐‘ง๐‘งsuperscript๐‘โ€ฒ๐‘ง\displaystyle\mathop{\rm Re}\nolimits\left(s_{2}p(z)+zp^{\prime}(z)\right)roman_Re ( italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_p ( italic_z ) + italic_z italic_p start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT ( italic_z ) )=\displaystyle==Re[(s2โˆ’s1)โขpโข(z)+(s1โขpโข(z)+zโขpโ€ฒโข(z))]Redelimited-[]subscript๐‘ 2subscript๐‘ 1๐‘๐‘งsubscript๐‘ 1๐‘๐‘ง๐‘งsuperscript๐‘โ€ฒ๐‘ง\displaystyle\mathop{\rm Re}\nolimits\left[\left(s_{2}-s_{1}\right)p(z)+\left(%s_{1}p(z)+zp^{\prime}(z)\right)\right]roman_Re [ ( italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT - italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) italic_p ( italic_z ) + ( italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_p ( italic_z ) + italic_z italic_p start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT ( italic_z ) ) ]
โ‰ฅ\displaystyle\geqโ‰ฅs2โข[t1+(1โˆ’t1)โข(1โˆ’s1s2)โขโˆซ011โˆ’xโข|z|1+xโข|z|โขs1โขxs1โˆ’1โข๐‘‘x]subscript๐‘ 2delimited-[]subscript๐‘ก11subscript๐‘ก11subscript๐‘ 1subscript๐‘ 2superscriptsubscript011๐‘ฅ๐‘ง1๐‘ฅ๐‘งsubscript๐‘ 1superscript๐‘ฅsubscript๐‘ 11differential-d๐‘ฅ\displaystyle s_{2}\left[t_{1}+(1-t_{1})\left(1-\frac{s_{1}}{s_{2}}\right)\int%\limits_{0}^{1}\frac{1-x|z|}{1+x|z|}\,s_{1}x^{s_{1}-1}dx\right]italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT [ italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + ( 1 - italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) ( 1 - divide start_ARG italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG start_ARG italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_ARG ) โˆซ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT divide start_ARG 1 - italic_x | italic_z | end_ARG start_ARG 1 + italic_x | italic_z | end_ARG italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_x start_POSTSUPERSCRIPT italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT - 1 end_POSTSUPERSCRIPT italic_d italic_x ]
โ‰ฅ\displaystyle\geqโ‰ฅs2โข[t1+(1โˆ’t1)โข(1โˆ’s1s2)โขฮพ0โข(s1)],subscript๐‘ 2delimited-[]subscript๐‘ก11subscript๐‘ก11subscript๐‘ 1subscript๐‘ 2subscript๐œ‰0subscript๐‘ 1\displaystyle s_{2}\left[t_{1}+(1-t_{1})\left(1-\frac{s_{1}}{s_{2}}\right)\xi_%{0}(s_{1})\right]\!,italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT [ italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + ( 1 - italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) ( 1 - divide start_ARG italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG start_ARG italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_ARG ) italic_ฮพ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) ] ,

see (2.2). Thus fโˆˆ๐”„s2t2๐‘“superscriptsubscript๐”„subscript๐‘ 2subscript๐‘ก2f\in\mathfrak{A}_{s_{2}}^{t_{2}}italic_f โˆˆ fraktur_A start_POSTSUBSCRIPT italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT. To show that this estimate is sharp, let us choose function q๐‘žqitalic_q in (3.5) to be qโข(z)=1โˆ’z1+z๐‘ž๐‘ง1๐‘ง1๐‘งq(z)=\frac{1-z}{1+z}italic_q ( italic_z ) = divide start_ARG 1 - italic_z end_ARG start_ARG 1 + italic_z end_ARG and,consequently,

s2โขpโข(z)+zโขpโ€ฒโข(z)=s2โขt1+(1โˆ’t1)โข[s1โข1โˆ’z1+z+(s2โˆ’s1)โขโˆซ011โˆ’xโขz1+xโขzโขs1โขxs1โˆ’1โข๐‘‘x].subscript๐‘ 2๐‘๐‘ง๐‘งsuperscript๐‘โ€ฒ๐‘งsubscript๐‘ 2subscript๐‘ก11subscript๐‘ก1delimited-[]subscript๐‘ 11๐‘ง1๐‘งsubscript๐‘ 2subscript๐‘ 1superscriptsubscript011๐‘ฅ๐‘ง1๐‘ฅ๐‘งsubscript๐‘ 1superscript๐‘ฅsubscript๐‘ 11differential-d๐‘ฅs_{2}p(z)+zp^{\prime}(z)=s_{2}t_{1}+(1-t_{1})\left[s_{1}\frac{1-z}{1+z}+\left(%s_{2}-s_{1}\right)\int_{0}^{1}\frac{1-xz}{1+xz}\,s_{1}x^{s_{1}-1}dx\right]\!.italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_p ( italic_z ) + italic_z italic_p start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT ( italic_z ) = italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + ( 1 - italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) [ italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT divide start_ARG 1 - italic_z end_ARG start_ARG 1 + italic_z end_ARG + ( italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT - italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) โˆซ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT divide start_ARG 1 - italic_x italic_z end_ARG start_ARG 1 + italic_x italic_z end_ARG italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_x start_POSTSUPERSCRIPT italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT - 1 end_POSTSUPERSCRIPT italic_d italic_x ] .

Setting in this equality zโ†’1โˆ’โ†’๐‘งsuperscript1z\to 1^{-}italic_z โ†’ 1 start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT, we obtain statement (i).

Statement (ii) follows from (i) by direct calculations.

To prove (iii), we note that by statement (ii) the given inclusions imply

t1โ‰คt0+(1โˆ’t0)โข(1โˆ’s0s1)โขฮพ0โข(s0),t2โ‰คt1+(1โˆ’t1)โข(1โˆ’s1s2)โขฮพ0โข(s1).subscript๐‘ก1subscript๐‘ก01subscript๐‘ก01subscript๐‘ 0subscript๐‘ 1subscript๐œ‰0subscript๐‘ 0subscript๐‘ก2subscript๐‘ก11subscript๐‘ก11subscript๐‘ 1subscript๐‘ 2subscript๐œ‰0subscript๐‘ 1\begin{array}[]{l}t_{1}\leq t_{0}+(1-t_{0})\left(1-\frac{s_{0}}{s_{1}}\right)%\xi_{0}(s_{0}),\\t_{2}\leq t_{1}+(1-t_{1})\left(1-\frac{s_{1}}{s_{2}}\right)\xi_{0}(s_{1}).\end%{array}start_ARRAY start_ROW start_CELL italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT โ‰ค italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT + ( 1 - italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) ( 1 - divide start_ARG italic_s start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG start_ARG italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG ) italic_ฮพ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_s start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) , end_CELL end_ROW start_ROW start_CELL italic_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT โ‰ค italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + ( 1 - italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) ( 1 - divide start_ARG italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG start_ARG italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_ARG ) italic_ฮพ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) . end_CELL end_ROW end_ARRAY(3.6)

Assume by contradiction that the inclusion ๐”„s0t0โŠ‚๐”„s2t2superscriptsubscript๐”„subscript๐‘ 0subscript๐‘ก0superscriptsubscript๐”„subscript๐‘ 2subscript๐‘ก2\mathfrak{A}_{s_{0}}^{t_{0}}\subset\mathfrak{A}_{s_{2}}^{t_{2}}fraktur_A start_POSTSUBSCRIPT italic_s start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT โŠ‚ fraktur_A start_POSTSUBSCRIPT italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT is sharp. Then t2subscript๐‘ก2t_{2}italic_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT is equal to t0+(1โˆ’t0)โข(1โˆ’s0s2)โขฮพ0โข(s0)subscript๐‘ก01subscript๐‘ก01subscript๐‘ 0subscript๐‘ 2subscript๐œ‰0subscript๐‘ 0t_{0}+(1-t_{0})\left(1-\frac{s_{0}}{s_{2}}\right)\xi_{0}(s_{0})italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT + ( 1 - italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) ( 1 - divide start_ARG italic_s start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG start_ARG italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_ARG ) italic_ฮพ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_s start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) by statement (i). Comparing this fact with the second inequality in (3.6) gives us

t0+(1โˆ’t0)โข(1โˆ’s0s2)โขฮพ0โข(s0)โ‰คt1+(1โˆ’t1)โข(1โˆ’s1s2)โขฮพ0โข(s1).subscript๐‘ก01subscript๐‘ก01subscript๐‘ 0subscript๐‘ 2subscript๐œ‰0subscript๐‘ 0subscript๐‘ก11subscript๐‘ก11subscript๐‘ 1subscript๐‘ 2subscript๐œ‰0subscript๐‘ 1t_{0}+(1-t_{0})\left(1-\frac{s_{0}}{s_{2}}\right)\xi_{0}(s_{0})\leq t_{1}+(1-t%_{1})\left(1-\frac{s_{1}}{s_{2}}\right)\xi_{0}(s_{1}).italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT + ( 1 - italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) ( 1 - divide start_ARG italic_s start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG start_ARG italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_ARG ) italic_ฮพ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_s start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) โ‰ค italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + ( 1 - italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) ( 1 - divide start_ARG italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG start_ARG italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_ARG ) italic_ฮพ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) .

Note that the coefficient of t1subscript๐‘ก1t_{1}italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT in the right-hand side is positive. Therefore, one can replace t1subscript๐‘ก1t_{1}italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT by a larger expression. Taking in mind the first inequality in (3.6) and reducing (1โˆ’t0)1subscript๐‘ก0(1-t_{0})( 1 - italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ), weget

s2โˆ’s0s2โขฮพ0โข(s0)โ‰คs1โˆ’s0s1โขฮพ0โข(s0)+[1โˆ’s1โˆ’s0s1โขฮพ0โข(s0)]โ‹…s2โˆ’s1s2โขฮพ0โข(s1).subscript๐‘ 2subscript๐‘ 0subscript๐‘ 2subscript๐œ‰0subscript๐‘ 0subscript๐‘ 1subscript๐‘ 0subscript๐‘ 1subscript๐œ‰0subscript๐‘ 0โ‹…delimited-[]1subscript๐‘ 1subscript๐‘ 0subscript๐‘ 1subscript๐œ‰0subscript๐‘ 0subscript๐‘ 2subscript๐‘ 1subscript๐‘ 2subscript๐œ‰0subscript๐‘ 1\frac{s_{2}-s_{0}}{s_{2}}\,\xi_{0}(s_{0})\leq\frac{s_{1}-s_{0}}{s_{1}}\,\xi_{0%}(s_{0})+\left[1-\frac{s_{1}-s_{0}}{s_{1}}\xi_{0}(s_{0})\right]\!\cdot\frac{s_%{2}-s_{1}}{s_{2}}\,\xi_{0}(s_{1}).divide start_ARG italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT - italic_s start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG start_ARG italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_ARG italic_ฮพ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_s start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) โ‰ค divide start_ARG italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT - italic_s start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG start_ARG italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG italic_ฮพ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_s start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) + [ 1 - divide start_ARG italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT - italic_s start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG start_ARG italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG italic_ฮพ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_s start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) ] โ‹… divide start_ARG italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT - italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG start_ARG italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_ARG italic_ฮพ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) .

This inequality is equivalent to

(s2โˆ’s1)โขs0s1โขs2โขฮพ0โข(s0)subscript๐‘ 2subscript๐‘ 1subscript๐‘ 0subscript๐‘ 1subscript๐‘ 2subscript๐œ‰0subscript๐‘ 0\displaystyle\frac{(s_{2}-s_{1})s_{0}}{s_{1}s_{2}}\,\xi_{0}(s_{0})divide start_ARG ( italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT - italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) italic_s start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG start_ARG italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_ARG italic_ฮพ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_s start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT )โ‰ค\displaystyle\leqโ‰ค[1โˆ’s1โˆ’s0s1โขฮพ0โข(s0)]โ‹…s2โˆ’s1s2โขฮพ0โข(s1),โ‹…delimited-[]1subscript๐‘ 1subscript๐‘ 0subscript๐‘ 1subscript๐œ‰0subscript๐‘ 0subscript๐‘ 2subscript๐‘ 1subscript๐‘ 2subscript๐œ‰0subscript๐‘ 1\displaystyle\left[1-\frac{s_{1}-s_{0}}{s_{1}}\,\xi_{0}(s_{0})\right]\!\cdot%\frac{s_{2}-s_{1}}{s_{2}}\,\xi_{0}(s_{1}),[ 1 - divide start_ARG italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT - italic_s start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG start_ARG italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG italic_ฮพ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_s start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) ] โ‹… divide start_ARG italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT - italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG start_ARG italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_ARG italic_ฮพ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) ,
s0s1โขฮพ0โข(s0)subscript๐‘ 0subscript๐‘ 1subscript๐œ‰0subscript๐‘ 0\displaystyle\frac{s_{0}}{s_{1}}\,\xi_{0}(s_{0})divide start_ARG italic_s start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG start_ARG italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG italic_ฮพ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_s start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT )โ‰ค\displaystyle\leqโ‰ค[1โˆ’ฮพ0โข(s0)+s0s1โขฮพ0โข(s0)]โ‹…ฮพ0โข(s1),โ‹…delimited-[]1subscript๐œ‰0subscript๐‘ 0subscript๐‘ 0subscript๐‘ 1subscript๐œ‰0subscript๐‘ 0subscript๐œ‰0subscript๐‘ 1\displaystyle\left[1-\xi_{0}(s_{0})+\frac{s_{0}}{s_{1}}\,\xi_{0}(s_{0})\right]%\!\cdot\xi_{0}(s_{1}),[ 1 - italic_ฮพ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_s start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) + divide start_ARG italic_s start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG start_ARG italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG italic_ฮพ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_s start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) ] โ‹… italic_ฮพ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) ,
1s1โขฮพ0โข(s1)1subscript๐‘ 1subscript๐œ‰0subscript๐‘ 1\displaystyle\frac{1}{s_{1}\xi_{0}(s_{1})}divide start_ARG 1 end_ARG start_ARG italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_ฮพ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) end_ARGโ‰ค\displaystyle\leqโ‰ค1s0โขฮพ0โข(s0)โˆ’1s0+1s1,1subscript๐‘ 0subscript๐œ‰0subscript๐‘ 01subscript๐‘ 01subscript๐‘ 1\displaystyle\frac{1}{s_{0}\xi_{0}(s_{0})}-\frac{1}{s_{0}}+\frac{1}{s_{1}}\,,divide start_ARG 1 end_ARG start_ARG italic_s start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT italic_ฮพ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_s start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) end_ARG - divide start_ARG 1 end_ARG start_ARG italic_s start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG + divide start_ARG 1 end_ARG start_ARG italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG ,

which coincides with 1โˆ’ฮพ0โข(s1)s1โขฮพ0โข(s1)โ‰ค1โˆ’ฮพ0โข(s0)s0โขฮพ0โข(s0).1subscript๐œ‰0subscript๐‘ 1subscript๐‘ 1subscript๐œ‰0subscript๐‘ 11subscript๐œ‰0subscript๐‘ 0subscript๐‘ 0subscript๐œ‰0subscript๐‘ 0\displaystyle\frac{1-\xi_{0}(s_{1})}{s_{1}\xi_{0}(s_{1})}\leq\frac{1-\xi_{0}(s%_{0})}{s_{0}\xi_{0}(s_{0})}.divide start_ARG 1 - italic_ฮพ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) end_ARG start_ARG italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_ฮพ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) end_ARG โ‰ค divide start_ARG 1 - italic_ฮพ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_s start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) end_ARG start_ARG italic_s start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT italic_ฮพ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_s start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) end_ARG . This contradicts statement (iv) of Theorem2.4. The proof is complete.โˆŽ

4. Filtrations and quasi-extrema

In this section, we explore the set-theoretic structures within the family of sets ๐”„stsuperscriptsubscript๐”„๐‘ ๐‘ก\mathfrak{A}_{s}^{t}fraktur_A start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT defined by equation (3.1). To do so, we introduce certain geometric objects tied to the outcomes of the preceding section.

Initially, let us recognize that the first statement (i) in Theorem3.3 can be interpreted as follows. Given P0=(s0,t0)โˆˆฮฉsubscript๐‘ƒ0subscript๐‘ 0subscript๐‘ก0ฮฉP_{0}=(s_{0},t_{0})\in\Omegaitalic_P start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = ( italic_s start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) โˆˆ roman_ฮฉ, consider the function tโ†‘,P0subscript๐‘กโ†‘subscript๐‘ƒ0t_{\uparrow,P_{0}}italic_t start_POSTSUBSCRIPT โ†‘ , italic_P start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT defined by

tโ†‘,P0โข(s):=t0+(1โˆ’t0)โข(1โˆ’s0s)โขฮพ0โข(s0),sโ‰ฅs0.formulae-sequenceassignsubscript๐‘กโ†‘subscript๐‘ƒ0๐‘ subscript๐‘ก01subscript๐‘ก01subscript๐‘ 0๐‘ subscript๐œ‰0subscript๐‘ 0๐‘ subscript๐‘ 0t_{\uparrow,P_{0}}(s):=t_{0}+(1-t_{0})\left(1-\frac{s_{0}}{s}\right)\xi_{0}(s_%{0}),\quad s\geq s_{0}.italic_t start_POSTSUBSCRIPT โ†‘ , italic_P start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_s ) := italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT + ( 1 - italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) ( 1 - divide start_ARG italic_s start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG start_ARG italic_s end_ARG ) italic_ฮพ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_s start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) , italic_s โ‰ฅ italic_s start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT .(4.1)

We designate its graph ฮ“โ†‘,P0subscriptฮ“โ†‘subscript๐‘ƒ0\Gamma_{\uparrow,P_{0}}roman_ฮ“ start_POSTSUBSCRIPT โ†‘ , italic_P start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT as the forward extremal curve for the point P0subscript๐‘ƒ0P_{0}italic_P start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT. Every point P=(s,t)โˆˆฮฉ๐‘ƒ๐‘ ๐‘กฮฉP=(s,t)\in\Omegaitalic_P = ( italic_s , italic_t ) โˆˆ roman_ฮฉ lying on or below this graph corresponds to the set ๐”„stsuperscriptsubscript๐”„๐‘ ๐‘ก\mathfrak{A}_{s}^{t}fraktur_A start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT including ๐”„s0t0superscriptsubscript๐”„subscript๐‘ 0subscript๐‘ก0\mathfrak{A}_{s_{0}}^{t_{0}}fraktur_A start_POSTSUBSCRIPT italic_s start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT, while all other points correspond to sets that do not include ๐”„s0t0superscriptsubscript๐”„subscript๐‘ 0subscript๐‘ก0\mathfrak{A}_{s_{0}}^{t_{0}}fraktur_A start_POSTSUBSCRIPT italic_s start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT.In addition, if P1โˆˆฮ“โ†‘,P0subscript๐‘ƒ1subscriptฮ“โ†‘subscript๐‘ƒ0P_{1}\in\Gamma_{\uparrow,P_{0}}italic_P start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT โˆˆ roman_ฮ“ start_POSTSUBSCRIPT โ†‘ , italic_P start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT, then ฮ“โ†‘,P1subscriptฮ“โ†‘subscript๐‘ƒ1\Gamma_{\uparrow,P_{1}}roman_ฮ“ start_POSTSUBSCRIPT โ†‘ , italic_P start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT lies below ฮ“โ†‘,P0subscriptฮ“โ†‘subscript๐‘ƒ0\Gamma_{\uparrow,P_{0}}roman_ฮ“ start_POSTSUBSCRIPT โ†‘ , italic_P start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT by Theorem3.3(iii).

Similarly, one can defined ฮ“โ†“,P0subscriptฮ“โ†“subscript๐‘ƒ0\Gamma_{\downarrow,P_{0}}roman_ฮ“ start_POSTSUBSCRIPT โ†“ , italic_P start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT, the backward extremal curve for the point P0subscript๐‘ƒ0P_{0}italic_P start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT. This is the curve such that every point P=(s,t)โˆˆฮฉ๐‘ƒ๐‘ ๐‘กฮฉP=(s,t)\in\Omegaitalic_P = ( italic_s , italic_t ) โˆˆ roman_ฮฉ lying on or above it corresponds to the set ๐”„stsuperscriptsubscript๐”„๐‘ ๐‘ก\mathfrak{A}_{s}^{t}fraktur_A start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT included in ๐”„s0t0superscriptsubscript๐”„subscript๐‘ 0subscript๐‘ก0\mathfrak{A}_{s_{0}}^{t_{0}}fraktur_A start_POSTSUBSCRIPT italic_s start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT, while all other points correspond to sets not included in ๐”„s0t0superscriptsubscript๐”„subscript๐‘ 0subscript๐‘ก0\mathfrak{A}_{s_{0}}^{t_{0}}fraktur_A start_POSTSUBSCRIPT italic_s start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT. ฮ“โ†“,P0subscriptฮ“โ†“subscript๐‘ƒ0\Gamma_{\downarrow,P_{0}}roman_ฮ“ start_POSTSUBSCRIPT โ†“ , italic_P start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT is the graph of the implicit function tโ†“,P0subscript๐‘กโ†“subscript๐‘ƒ0t_{\downarrow,P_{0}}italic_t start_POSTSUBSCRIPT โ†“ , italic_P start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT defined by

t0=tโ†“,P0โข(s)+(1โˆ’tโ†“,P0โข(s))โข(1โˆ’ss0)โขฮพ0โข(s),subscript๐‘ก0subscript๐‘กโ†“subscript๐‘ƒ0๐‘ 1subscript๐‘กโ†“subscript๐‘ƒ0๐‘ 1๐‘ subscript๐‘ 0subscript๐œ‰0๐‘ t_{0}=t_{\downarrow,P_{0}}(s)+\left(1-t_{\downarrow,P_{0}}(s)\right)\left(1-%\frac{s}{s_{0}}\right)\xi_{0}(s),italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = italic_t start_POSTSUBSCRIPT โ†“ , italic_P start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_s ) + ( 1 - italic_t start_POSTSUBSCRIPT โ†“ , italic_P start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_s ) ) ( 1 - divide start_ARG italic_s end_ARG start_ARG italic_s start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG ) italic_ฮพ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_s ) ,(4.2)

which is obviously well-defined and non-negative for all sโˆˆ[sโˆ—,s0],๐‘ subscript๐‘ subscript๐‘ 0s\in[s_{*},s_{0}],italic_s โˆˆ [ italic_s start_POSTSUBSCRIPT โˆ— end_POSTSUBSCRIPT , italic_s start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ] , where sโˆ—subscript๐‘ s_{*}italic_s start_POSTSUBSCRIPT โˆ— end_POSTSUBSCRIPT is the unique solution to the equation (1โˆ’ss0)โขฮพ0โข(s)=t01๐‘ subscript๐‘ 0subscript๐œ‰0๐‘ subscript๐‘ก0\left(1-\frac{s}{s_{0}}\right)\xi_{0}(s)=t_{0}( 1 - divide start_ARG italic_s end_ARG start_ARG italic_s start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG ) italic_ฮพ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_s ) = italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT.

In this connection the following construction is natural and quite interesting.Start from a point P0=(s0,t0)โˆˆฮฉsubscript๐‘ƒ0subscript๐‘ 0subscript๐‘ก0ฮฉP_{0}=(s_{0},t_{0})\in\Omegaitalic_P start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = ( italic_s start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) โˆˆ roman_ฮฉ and let s1=s0+ฮ”โขssubscript๐‘ 1subscript๐‘ 0ฮ”๐‘ s_{1}=s_{0}+\Delta sitalic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = italic_s start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT + roman_ฮ” italic_s. If ฮ”โขs>0,ฮ”๐‘ 0\Delta s>0,roman_ฮ” italic_s > 0 , calculate t1=tโ†‘,P0โข(s1)subscript๐‘ก1subscript๐‘กโ†‘subscript๐‘ƒ0subscript๐‘ 1t_{1}=t_{\uparrow,P_{0}}(s_{1})italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = italic_t start_POSTSUBSCRIPT โ†‘ , italic_P start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) (otherwise, we are dealing with tโ†“,P0subscript๐‘กโ†“subscript๐‘ƒ0t_{\downarrow,P_{0}}italic_t start_POSTSUBSCRIPT โ†“ , italic_P start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT). Continue by setting s2=s1+ฮ”โขssubscript๐‘ 2subscript๐‘ 1ฮ”๐‘ s_{2}=s_{1}+\Delta sitalic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + roman_ฮ” italic_s and t2=tโ†‘,P1โข(s2)subscript๐‘ก2subscript๐‘กโ†‘subscript๐‘ƒ1subscript๐‘ 2t_{2}=t_{\uparrow,P_{1}}(s_{2})italic_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = italic_t start_POSTSUBSCRIPT โ†‘ , italic_P start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ). At the next step, let s3=s2+ฮ”โขssubscript๐‘ 3subscript๐‘ 2ฮ”๐‘ s_{3}=s_{2}+\Delta sitalic_s start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT = italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT + roman_ฮ” italic_s, calculate t3subscript๐‘ก3t_{3}italic_t start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT by (4.1), and so on. Letting ฮ”โขsโ†’0โ†’ฮ”๐‘ 0\Delta s\to 0roman_ฮ” italic_s โ†’ 0, we obtain the differential equation dโขt1โˆ’t=ฮพ0โข(s)โขdโขss๐‘‘๐‘ก1๐‘กsubscript๐œ‰0๐‘ ๐‘‘๐‘ ๐‘ \displaystyle\frac{dt}{1-t}=\frac{\xi_{0}(s)ds}{s}divide start_ARG italic_d italic_t end_ARG start_ARG 1 - italic_t end_ARG = divide start_ARG italic_ฮพ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_s ) italic_d italic_s end_ARG start_ARG italic_s end_ARG with initial point (s0,t0)subscript๐‘ 0subscript๐‘ก0(s_{0},t_{0})( italic_s start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ). Its solution is

tP0โข(s)=1โˆ’(1โˆ’t0)โขexpโก[โˆ’โˆซs0sฮพ0โข(ฯƒ)โขdโขฯƒฯƒ].subscript๐‘กsubscript๐‘ƒ0๐‘ 11subscript๐‘ก0superscriptsubscriptsubscript๐‘ 0๐‘ subscript๐œ‰0๐œŽ๐‘‘๐œŽ๐œŽt_{P_{0}}(s)=1-(1-t_{0})\exp\left[-\int_{s_{0}}^{s}\frac{\xi_{0}(\sigma)d%\sigma}{\sigma}\right]\!.italic_t start_POSTSUBSCRIPT italic_P start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_s ) = 1 - ( 1 - italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) roman_exp [ - โˆซ start_POSTSUBSCRIPT italic_s start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_s end_POSTSUPERSCRIPT divide start_ARG italic_ฮพ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_ฯƒ ) italic_d italic_ฯƒ end_ARG start_ARG italic_ฯƒ end_ARG ] .(4.3)

By construction, the graph ฮ“P0subscriptฮ“subscript๐‘ƒ0\Gamma_{P_{0}}roman_ฮ“ start_POSTSUBSCRIPT italic_P start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT of the last function has the peculiarity: if P1โˆˆฮ“P0subscript๐‘ƒ1subscriptฮ“subscript๐‘ƒ0P_{1}\in\Gamma_{P_{0}}italic_P start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT โˆˆ roman_ฮ“ start_POSTSUBSCRIPT italic_P start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT, then ฮ“P1=ฮ“P0subscriptฮ“subscript๐‘ƒ1subscriptฮ“subscript๐‘ƒ0\Gamma_{P_{1}}=\Gamma_{P_{0}}roman_ฮ“ start_POSTSUBSCRIPT italic_P start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT = roman_ฮ“ start_POSTSUBSCRIPT italic_P start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT. We say that this graph is the curve of infinitesimally sharp inclusions.The following result describes the relationship between the extremal curves and the curve of infinitesimally sharp inclusions.

Theorem 4.1.

Let P0โˆˆฮฉsubscript๐‘ƒ0ฮฉP_{0}\in\Omegaitalic_P start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT โˆˆ roman_ฮฉ. Then the curve of infinitesimally sharp inclusions ฮ“P0subscriptฮ“subscript๐‘ƒ0\Gamma_{P_{0}}roman_ฮ“ start_POSTSUBSCRIPT italic_P start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT lies below the forward extremal curve ฮ“โ†‘,P0subscriptฮ“โ†‘subscript๐‘ƒ0\Gamma_{\uparrow,P_{0}}roman_ฮ“ start_POSTSUBSCRIPT โ†‘ , italic_P start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT and above the backward extremal curve ฮ“โ†“,P0subscriptฮ“โ†“subscript๐‘ƒ0\Gamma_{\downarrow,P_{0}}roman_ฮ“ start_POSTSUBSCRIPT โ†“ , italic_P start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT.

Proof.

To prove the first statement, compare the formulas (4.1) and (4.3). We need to show that the inequality

1โˆ’expโก[โˆ’โˆซs0sฮพ0โข(ฯƒ)โขdโขฯƒฯƒ]<(1โˆ’s0s)โขฮพ0โข(s0)1superscriptsubscriptsubscript๐‘ 0๐‘ subscript๐œ‰0๐œŽ๐‘‘๐œŽ๐œŽ1subscript๐‘ 0๐‘ subscript๐œ‰0subscript๐‘ 01-\exp\left[-\int_{s_{0}}^{s}\frac{\xi_{0}(\sigma)d\sigma}{\sigma}\right]<%\left(1-\frac{s_{0}}{s}\right)\xi_{0}(s_{0})1 - roman_exp [ - โˆซ start_POSTSUBSCRIPT italic_s start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_s end_POSTSUPERSCRIPT divide start_ARG italic_ฮพ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_ฯƒ ) italic_d italic_ฯƒ end_ARG start_ARG italic_ฯƒ end_ARG ] < ( 1 - divide start_ARG italic_s start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG start_ARG italic_s end_ARG ) italic_ฮพ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_s start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT )

holds for all s>s0๐‘ subscript๐‘ 0s>s_{0}italic_s > italic_s start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT. This is equivalent to Fโข(s)<0๐น๐‘ 0F(s)<0italic_F ( italic_s ) < 0, where

Fโข(s):=โˆซs0sฮพ0โข(ฯƒ)โขdโขฯƒฯƒ+logโก(1โˆ’ฮพ0โข(s0)+1sโขs0โขฮพ0โข(s0)).assign๐น๐‘ superscriptsubscriptsubscript๐‘ 0๐‘ subscript๐œ‰0๐œŽ๐‘‘๐œŽ๐œŽ1subscript๐œ‰0subscript๐‘ 01๐‘ subscript๐‘ 0subscript๐œ‰0subscript๐‘ 0F(s):=\int_{s_{0}}^{s}\frac{\xi_{0}(\sigma)d\sigma}{\sigma}+\log\left(1-\xi_{0%}(s_{0})+\frac{1}{s}s_{0}\xi_{0}(s_{0})\right)\!.italic_F ( italic_s ) := โˆซ start_POSTSUBSCRIPT italic_s start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_s end_POSTSUPERSCRIPT divide start_ARG italic_ฮพ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_ฯƒ ) italic_d italic_ฯƒ end_ARG start_ARG italic_ฯƒ end_ARG + roman_log ( 1 - italic_ฮพ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_s start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) + divide start_ARG 1 end_ARG start_ARG italic_s end_ARG italic_s start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT italic_ฮพ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_s start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) ) .

Assertion (iv) of Theorem2.4 implies

Fโ€ฒโข(s)=(ฮพ3โข(s0)โˆ’ฮพ3โข(s))โ‹…(s0โขฮพ0โข(s0)โขsโขฮพ0โข(s))<0.superscript๐นโ€ฒ๐‘ โ‹…subscript๐œ‰3subscript๐‘ 0subscript๐œ‰3๐‘ subscript๐‘ 0subscript๐œ‰0subscript๐‘ 0๐‘ subscript๐œ‰0๐‘ 0F^{\prime}(s)=(\xi_{3}(s_{0})-\xi_{3}(s))\cdot(s_{0}\xi_{0}(s_{0})s\xi_{0}(s))%<0.italic_F start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT ( italic_s ) = ( italic_ฮพ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ( italic_s start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) - italic_ฮพ start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ( italic_s ) ) โ‹… ( italic_s start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT italic_ฮพ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_s start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) italic_s italic_ฮพ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_s ) ) < 0 .

Since Fโข(s0)=0๐นsubscript๐‘ 00F(s_{0})=0italic_F ( italic_s start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) = 0, this proves the desired.

Regarding the second assertion, we have tโ†“,P0โข(s)=t0โˆ’(1โˆ’ss0)โขฮพ0โข(s)1โˆ’(1โˆ’ss0)โขฮพ0โข(s)subscript๐‘กโ†“subscript๐‘ƒ0๐‘ subscript๐‘ก01๐‘ subscript๐‘ 0subscript๐œ‰0๐‘ 11๐‘ subscript๐‘ 0subscript๐œ‰0๐‘ t_{\downarrow,P_{0}}(s)=\frac{t_{0}-\left(1-\frac{s}{s_{0}}\right)\xi_{0}(s)}{%1-\left(1-\frac{s}{s_{0}}\right)\xi_{0}(s)}italic_t start_POSTSUBSCRIPT โ†“ , italic_P start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_s ) = divide start_ARG italic_t start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT - ( 1 - divide start_ARG italic_s end_ARG start_ARG italic_s start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG ) italic_ฮพ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_s ) end_ARG start_ARG 1 - ( 1 - divide start_ARG italic_s end_ARG start_ARG italic_s start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG ) italic_ฮพ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_s ) end_ARG by (4.2). So, the inequality tโ†“,P0โข(s)<tP0โข(s)subscript๐‘กโ†“subscript๐‘ƒ0๐‘ subscript๐‘กsubscript๐‘ƒ0๐‘ t_{\downarrow,P_{0}}(s)<t_{P_{0}}(s)italic_t start_POSTSUBSCRIPT โ†“ , italic_P start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_s ) < italic_t start_POSTSUBSCRIPT italic_P start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_s ) for s<s0๐‘ subscript๐‘ 0s<s_{0}italic_s < italic_s start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT means thatexpโก[โˆ’โˆซs0sฮพ0โข(ฯƒ)โขdโขฯƒฯƒ]<11โˆ’(1โˆ’ss0)โขฮพ0โข(s)superscriptsubscriptsubscript๐‘ 0๐‘ subscript๐œ‰0๐œŽ๐‘‘๐œŽ๐œŽ111๐‘ subscript๐‘ 0subscript๐œ‰0๐‘ \exp\left[-\int_{s_{0}}^{s}\frac{\xi_{0}(\sigma)d\sigma}{\sigma}\right]<\frac{%1}{1-\left(1-\frac{s}{s_{0}}\right)\xi_{0}(s)}roman_exp [ - โˆซ start_POSTSUBSCRIPT italic_s start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_s end_POSTSUPERSCRIPT divide start_ARG italic_ฮพ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_ฯƒ ) italic_d italic_ฯƒ end_ARG start_ARG italic_ฯƒ end_ARG ] < divide start_ARG 1 end_ARG start_ARG 1 - ( 1 - divide start_ARG italic_s end_ARG start_ARG italic_s start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG ) italic_ฮพ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_s ) end_ARGwhich is equivalent to Gโข(s)<0๐บ๐‘ 0G(s)<0italic_G ( italic_s ) < 0, where

Gโข(s):=โˆ’โˆซs0sฮพ0โข(ฯƒ)โขdโขฯƒฯƒ+logโก(1โˆ’(1โˆ’ss0)โขฮพ0โข(s)).assign๐บ๐‘ superscriptsubscriptsubscript๐‘ 0๐‘ subscript๐œ‰0๐œŽ๐‘‘๐œŽ๐œŽ11๐‘ subscript๐‘ 0subscript๐œ‰0๐‘ G(s):=-\int_{s_{0}}^{s}\frac{\xi_{0}(\sigma)d\sigma}{\sigma}+\log\left(1-\left%(1-\frac{s}{s_{0}}\right)\xi_{0}(s)\right).italic_G ( italic_s ) := - โˆซ start_POSTSUBSCRIPT italic_s start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_s end_POSTSUPERSCRIPT divide start_ARG italic_ฮพ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_ฯƒ ) italic_d italic_ฯƒ end_ARG start_ARG italic_ฯƒ end_ARG + roman_log ( 1 - ( 1 - divide start_ARG italic_s end_ARG start_ARG italic_s start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_ARG ) italic_ฮพ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_s ) ) .

Since after the permutation s0โ†”sโ†”subscript๐‘ 0๐‘ s_{0}\leftrightarrow sitalic_s start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT โ†” italic_s, this function coincides with the function F๐นFitalic_F applied above, the proof is complete.โˆŽ

We are at the point where we can address the main problems outlined in this paper.

Let T:[sโˆ—,โˆž)โ†’[0,1):๐‘‡โ†’subscript๐‘ 01T:[s_{*},\infty)\to[0,1)italic_T : [ italic_s start_POSTSUBSCRIPT โˆ— end_POSTSUBSCRIPT , โˆž ) โ†’ [ 0 , 1 ) be a differentiable function. The first inquiry is:

โˆ™โˆ™\bulletโˆ™ What conditions on T๐‘‡Titalic_T provide that the one-parameter family {๐”„sTโข(s),sโ‰ฅsโˆ—}\left\{\mathfrak{A}_{s}^{T(s)},\ s\geq s*\right\}{ fraktur_A start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T ( italic_s ) end_POSTSUPERSCRIPT , italic_s โ‰ฅ italic_s โˆ— } forms a filtration?

We answer it as follows.

Theorem 4.2.

Let function T๐‘‡Titalic_T be differentiable on (sโˆ—,โˆž)subscript๐‘ (s_{*},\infty)( italic_s start_POSTSUBSCRIPT โˆ— end_POSTSUBSCRIPT , โˆž ). Then ๐”„๐”„\mathfrak{A}fraktur_A is a filtration if and only if

Tโ€ฒโข(s)โ‰ค(1โˆ’Tโข(s))โขฮพ0โข(s)s,s>sโˆ—.formulae-sequencesuperscript๐‘‡โ€ฒ๐‘ 1๐‘‡๐‘ subscript๐œ‰0๐‘ ๐‘ ๐‘ subscript๐‘ T^{\prime}(s)\leq(1-T(s))\frac{\xi_{0}(s)}{s},\quad s>s_{*}.italic_T start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT ( italic_s ) โ‰ค ( 1 - italic_T ( italic_s ) ) divide start_ARG italic_ฮพ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_s ) end_ARG start_ARG italic_s end_ARG , italic_s > italic_s start_POSTSUBSCRIPT โˆ— end_POSTSUBSCRIPT .(4.4)
Proof.

Let s0>sโˆ—subscript๐‘ 0subscript๐‘ s_{0}>s_{*}italic_s start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT > italic_s start_POSTSUBSCRIPT โˆ— end_POSTSUBSCRIPT and analyze the function Fโข(s):=logโก(1โˆ’Tโข(s))โˆ’logโก(1โˆ’tP0โข(s))assign๐น๐‘ 1๐‘‡๐‘ 1subscript๐‘กsubscript๐‘ƒ0๐‘ F(s):=\log(1-T(s))-\log(1-t_{P_{0}}(s))italic_F ( italic_s ) := roman_log ( 1 - italic_T ( italic_s ) ) - roman_log ( 1 - italic_t start_POSTSUBSCRIPT italic_P start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_s ) ) with P0=(s0,Tโข(s0))subscript๐‘ƒ0subscript๐‘ 0๐‘‡subscript๐‘ 0P_{0}=(s_{0},T(s_{0}))italic_P start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = ( italic_s start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_T ( italic_s start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) ). It follows from (4.3) that inequality (4.4) means that Fโ€ฒโข(s)โ‰ฅ0superscript๐นโ€ฒ๐‘ 0F^{\prime}(s)\geq 0italic_F start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT ( italic_s ) โ‰ฅ 0. Consequently, no part of the graph of T๐‘‡Titalic_T can lie above the curve of infinitesimally sharp inclusions ฮ“P0subscriptฮ“subscript๐‘ƒ0\Gamma_{P_{0}}roman_ฮ“ start_POSTSUBSCRIPT italic_P start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT.

Take any s1,s2subscript๐‘ 1subscript๐‘ 2s_{1},s_{2}italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT such that sโˆ—<s1<s2subscript๐‘ subscript๐‘ 1subscript๐‘ 2s_{*}<s_{1}<s_{2}italic_s start_POSTSUBSCRIPT โˆ— end_POSTSUBSCRIPT < italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT < italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT. First assume that inequality (4.4) holds. Then Tโข(s2)โ‰คtP1โข(s2),P1=(s1,Tโข(s1))formulae-sequence๐‘‡subscript๐‘ 2subscript๐‘กsubscript๐‘ƒ1subscript๐‘ 2subscript๐‘ƒ1subscript๐‘ 1๐‘‡subscript๐‘ 1T(s_{2})\leq t_{P_{1}}(s_{2}),\ P_{1}=(s_{1},T(s_{1}))italic_T ( italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) โ‰ค italic_t start_POSTSUBSCRIPT italic_P start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) , italic_P start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = ( italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_T ( italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) ). Therefore, ๐”„s1Tโข(s1)โŠ‚๐”„s2Tโข(s2)superscriptsubscript๐”„subscript๐‘ 1๐‘‡subscript๐‘ 1superscriptsubscript๐”„subscript๐‘ 2๐‘‡subscript๐‘ 2\mathfrak{A}_{s_{1}}^{T(s_{1})}\subset\mathfrak{A}_{s_{2}}^{T(s_{2})}fraktur_A start_POSTSUBSCRIPT italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T ( italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) end_POSTSUPERSCRIPT โŠ‚ fraktur_A start_POSTSUBSCRIPT italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T ( italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) end_POSTSUPERSCRIPT by Theorems3.3 and4.1. Thus, since s1,s2subscript๐‘ 1subscript๐‘ 2s_{1},s_{2}italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT are arbitrary, we conclude that ๐”„๐”„\mathfrak{A}fraktur_A is a filtration.

Otherwise, assume that Tโ€ฒโข(s1)>(1โˆ’Tโข(s1))โขฮพ0โข(s1)s1superscript๐‘‡โ€ฒsubscript๐‘ 11๐‘‡subscript๐‘ 1subscript๐œ‰0subscript๐‘ 1subscript๐‘ 1T^{\prime}(s_{1})>(1-T(s_{1}))\frac{\xi_{0}(s_{1})}{s_{1}}italic_T start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT ( italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) > ( 1 - italic_T ( italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) ) divide start_ARG italic_ฮพ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) end_ARG start_ARG italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG for some s1>sโˆ—subscript๐‘ 1subscript๐‘ s_{1}>s_{*}italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT > italic_s start_POSTSUBSCRIPT โˆ— end_POSTSUBSCRIPT. Hence there is s2>s1subscript๐‘ 2subscript๐‘ 1s_{2}>s_{1}italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT > italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT such that for all sโˆˆ[s1,s2]๐‘ subscript๐‘ 1subscript๐‘ 2s\in[s_{1},s_{2}]italic_s โˆˆ [ italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ] the inequality Tโ€ฒโข(s)>(1โˆ’Tโข(s1))โขฮพ0โข(s1)s2superscript๐‘‡โ€ฒ๐‘ 1๐‘‡subscript๐‘ 1subscript๐œ‰0subscript๐‘ 1subscript๐‘ 2T^{\prime}(s)>(1-T(s_{1}))\frac{\xi_{0}(s_{1})}{s_{2}}italic_T start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT ( italic_s ) > ( 1 - italic_T ( italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) ) divide start_ARG italic_ฮพ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) end_ARG start_ARG italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_ARG holds. This implies

Tโข(s2)โˆ’Tโข(s1)s2โˆ’s1>(1โˆ’Tโข(s1))โขฮพ0โข(s1)s2,๐‘‡subscript๐‘ 2๐‘‡subscript๐‘ 1subscript๐‘ 2subscript๐‘ 11๐‘‡subscript๐‘ 1subscript๐œ‰0subscript๐‘ 1subscript๐‘ 2\frac{T(s_{2})-T(s_{1})}{s_{2}-s_{1}}>(1-T(s_{1}))\frac{\xi_{0}(s_{1})}{s_{2}}\,,divide start_ARG italic_T ( italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) - italic_T ( italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) end_ARG start_ARG italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT - italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG > ( 1 - italic_T ( italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) ) divide start_ARG italic_ฮพ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) end_ARG start_ARG italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_ARG ,

or, which is the same, Tโข(s2)>Tโข(s1)+(1โˆ’Tโข(s1))โข(1โˆ’s1s2)โขฮพ0โข(s1)=tโ†‘,P1โข(s2)๐‘‡subscript๐‘ 2๐‘‡subscript๐‘ 11๐‘‡subscript๐‘ 11subscript๐‘ 1subscript๐‘ 2subscript๐œ‰0subscript๐‘ 1subscript๐‘กโ†‘subscript๐‘ƒ1subscript๐‘ 2T(s_{2})>T(s_{1})+(1-T(s_{1}))\left(1-\frac{s_{1}}{s_{2}}\right)\xi_{0}(s_{1})%=t_{\uparrow,P_{1}}(s_{2})italic_T ( italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) > italic_T ( italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) + ( 1 - italic_T ( italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) ) ( 1 - divide start_ARG italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG start_ARG italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_ARG ) italic_ฮพ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) = italic_t start_POSTSUBSCRIPT โ†‘ , italic_P start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ). Hence ๐”„s1Tโข(s1)โŠ„๐”„s2Tโข(s2)not-subset-ofsuperscriptsubscript๐”„subscript๐‘ 1๐‘‡subscript๐‘ 1superscriptsubscript๐”„subscript๐‘ 2๐‘‡subscript๐‘ 2\mathfrak{A}_{s_{1}}^{T(s_{1})}\not\subset\mathfrak{A}_{s_{2}}^{T(s_{2})}fraktur_A start_POSTSUBSCRIPT italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T ( italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) end_POSTSUPERSCRIPT โŠ„ fraktur_A start_POSTSUBSCRIPT italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T ( italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) end_POSTSUPERSCRIPT by Theorem3.3, that is, ๐”„๐”„\mathfrak{A}fraktur_A is not a filtration.โˆŽ

Now, we shift our attention to the whole family ๐”„๐”„\mathfrak{A}fraktur_A.As this family equipped with the relation โŠ‚\subsetโŠ‚ constitutes a partially ordered family, our second inquiry is:

โˆ™โˆ™\bulletโˆ™ Does (๐”„,โŠ‚)๐”„(\mathfrak{A},\subset)( fraktur_A , โŠ‚ ) indeed form a lattice?

As we strive to comprehend this question, we uncover that the answer is negative, showing that the sets of so-called quasi-suprema and quasi-infima are not singletons.

Definition 4.3.

Given a pair ๐”„1,๐”„2โˆˆ๐”„subscript๐”„1subscript๐”„2๐”„\mathfrak{A}_{1},\mathfrak{A}_{2}\in\mathfrak{A}fraktur_A start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , fraktur_A start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT โˆˆ fraktur_A, we say that

  • โ€ข

    ๐”„0โˆˆ๐”„subscript๐”„0๐”„\mathfrak{A}_{0}\in\mathfrak{A}fraktur_A start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT โˆˆ fraktur_A is a quasi-supremum of this pair and write ๐”„0โˆˆqsupโข(๐”„1,๐”„2)subscript๐”„0qsupsubscript๐”„1subscript๐”„2\mathfrak{A}_{0}\in{\rm qsup}(\mathfrak{A}_{1},\mathfrak{A}_{2})fraktur_A start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT โˆˆ roman_qsup ( fraktur_A start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , fraktur_A start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) if ๐”„1โˆช๐”„2โŠ‚๐”„0subscript๐”„1subscript๐”„2subscript๐”„0\mathfrak{A}_{1}\cup\mathfrak{A}_{2}\subset\mathfrak{A}_{0}fraktur_A start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT โˆช fraktur_A start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT โŠ‚ fraktur_A start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT and there is no ๐”„โˆ—โˆˆ๐”„subscript๐”„๐”„\mathfrak{A}_{*}\in\mathfrak{A}fraktur_A start_POSTSUBSCRIPT โˆ— end_POSTSUBSCRIPT โˆˆ fraktur_A such that ๐”„1โˆช๐”„2โŠ‚๐”„โˆ—โŠŠ๐”„0subscript๐”„1subscript๐”„2subscript๐”„subscript๐”„0\mathfrak{A}_{1}\cup\mathfrak{A}_{2}\subset\mathfrak{A}_{*}\subsetneq\mathfrak%{A}_{0}fraktur_A start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT โˆช fraktur_A start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT โŠ‚ fraktur_A start_POSTSUBSCRIPT โˆ— end_POSTSUBSCRIPT โŠŠ fraktur_A start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT.

  • โ€ข

    ๐”„0โˆˆ๐”„subscript๐”„0๐”„\mathfrak{A}_{0}\in\mathfrak{A}fraktur_A start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT โˆˆ fraktur_A is a quasi-infimum of this pair and write ๐”„0โˆˆqinfโข(๐”„1,๐”„2)subscript๐”„0qinfsubscript๐”„1subscript๐”„2\mathfrak{A}_{0}\in{\rm qinf}(\mathfrak{A}_{1},\mathfrak{A}_{2})fraktur_A start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT โˆˆ roman_qinf ( fraktur_A start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , fraktur_A start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) if ๐”„0โŠ‚๐”„1โˆฉ๐”„2subscript๐”„0subscript๐”„1subscript๐”„2\mathfrak{A}_{0}\subset\mathfrak{A}_{1}\cap\mathfrak{A}_{2}fraktur_A start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT โŠ‚ fraktur_A start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT โˆฉ fraktur_A start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT and there is no ๐”„โˆ—โˆˆ๐”„subscript๐”„๐”„\mathfrak{A}_{*}\in\mathfrak{A}fraktur_A start_POSTSUBSCRIPT โˆ— end_POSTSUBSCRIPT โˆˆ fraktur_A such that ๐”„0โŠŠ๐”„โˆ—โŠ‚๐”„1โˆฉ๐”„2subscript๐”„0subscript๐”„subscript๐”„1subscript๐”„2\mathfrak{A}_{0}\subsetneq\mathfrak{A}_{*}\subset\mathfrak{A}_{1}\cap\mathfrak%{A}_{2}fraktur_A start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT โŠŠ fraktur_A start_POSTSUBSCRIPT โˆ— end_POSTSUBSCRIPT โŠ‚ fraktur_A start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT โˆฉ fraktur_A start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT.

We are now going to describe all quasi-suprema and quasi-infima of pairs of sets ๐”„stsuperscriptsubscript๐”„๐‘ ๐‘ก\mathfrak{A}_{s}^{t}fraktur_A start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT defined by (3.1).

Let s1โ‰คs2subscript๐‘ 1subscript๐‘ 2s_{1}\leq s_{2}italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT โ‰ค italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT and the point (s2,t2)subscript๐‘ 2subscript๐‘ก2(s_{2},t_{2})( italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) lies on or below the forward extremal curve ฮ“โ†‘,P1subscriptฮ“โ†‘subscript๐‘ƒ1\Gamma_{\uparrow,P_{1}}roman_ฮ“ start_POSTSUBSCRIPT โ†‘ , italic_P start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT. Then ๐”„s1t1โŠ‚๐”„s2t2superscriptsubscript๐”„subscript๐‘ 1subscript๐‘ก1superscriptsubscript๐”„subscript๐‘ 2subscript๐‘ก2\mathfrak{A}_{s_{1}}^{t_{1}}\subset\mathfrak{A}_{s_{2}}^{t_{2}}fraktur_A start_POSTSUBSCRIPT italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT โŠ‚ fraktur_A start_POSTSUBSCRIPT italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT, and so ๐”„s1t1superscriptsubscript๐”„subscript๐‘ 1subscript๐‘ก1\mathfrak{A}_{s_{1}}^{t_{1}}fraktur_A start_POSTSUBSCRIPT italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT is the infimum as well as ๐”„s2t2superscriptsubscript๐”„subscript๐‘ 2subscript๐‘ก2\mathfrak{A}_{s_{2}}^{t_{2}}fraktur_A start_POSTSUBSCRIPT italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT is the supremum of this pair. Therefore we need to focus on the case s1<s2subscript๐‘ 1subscript๐‘ 2s_{1}<s_{2}italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT < italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT and t2>t1+(1โˆ’t1)โข(1โˆ’s1s2)โขฮพ0โข(s1)subscript๐‘ก2subscript๐‘ก11subscript๐‘ก11subscript๐‘ 1subscript๐‘ 2subscript๐œ‰0subscript๐‘ 1t_{2}>t_{1}+(1-t_{1})\left(1-\frac{s_{1}}{s_{2}}\right)\xi_{0}(s_{1})italic_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT > italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + ( 1 - italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) ( 1 - divide start_ARG italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG start_ARG italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_ARG ) italic_ฮพ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ).

Theorem 4.4.

Let P1=(s1,t1)โˆˆฮฉsubscript๐‘ƒ1subscript๐‘ 1subscript๐‘ก1ฮฉP_{1}=(s_{1},t_{1})\in\Omegaitalic_P start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = ( italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) โˆˆ roman_ฮฉ and P2=(s2,t2)subscript๐‘ƒ2subscript๐‘ 2subscript๐‘ก2P_{2}=(s_{2},t_{2})italic_P start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = ( italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) lie above ฮ“โ†‘,P1subscriptฮ“โ†‘subscript๐‘ƒ1\Gamma_{\uparrow,P_{1}}roman_ฮ“ start_POSTSUBSCRIPT โ†‘ , italic_P start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT. Then the following assertions hold:

  • (a)

    the set qsupโข(๐”„s1t1,๐”„s2t2)qsupsuperscriptsubscript๐”„subscript๐‘ 1subscript๐‘ก1superscriptsubscript๐”„subscript๐‘ 2subscript๐‘ก2{\rm qsup}(\mathfrak{A}_{s_{1}}^{t_{1}},\mathfrak{A}_{s_{2}}^{t_{2}})roman_qsup ( fraktur_A start_POSTSUBSCRIPT italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT , fraktur_A start_POSTSUBSCRIPT italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ) consists of ๐”„sฯ„1โข(s)superscriptsubscript๐”„๐‘ subscript๐œ1๐‘ \mathfrak{A}_{s}^{\tau_{1}(s)}fraktur_A start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_ฯ„ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_s ) end_POSTSUPERSCRIPT such that sโ‰ฅs2๐‘ subscript๐‘ 2s\geq s_{2}italic_s โ‰ฅ italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT and ฯ„1โข(s)=minโก{tโ†‘,P1โข(s),tโ†‘,P2โข(s)}subscript๐œ1๐‘ subscript๐‘กโ†‘subscript๐‘ƒ1๐‘ subscript๐‘กโ†‘subscript๐‘ƒ2๐‘ \tau_{1}(s)=\min\left\{t_{\uparrow,P_{1}}(s),t_{\uparrow,P_{2}}(s)\right\}italic_ฯ„ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_s ) = roman_min { italic_t start_POSTSUBSCRIPT โ†‘ , italic_P start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_s ) , italic_t start_POSTSUBSCRIPT โ†‘ , italic_P start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_s ) };

  • (b)

    the set qinfโข(๐”„s1t1,๐”„s2t2)qinfsuperscriptsubscript๐”„subscript๐‘ 1subscript๐‘ก1superscriptsubscript๐”„subscript๐‘ 2subscript๐‘ก2{\rm qinf}(\mathfrak{A}_{s_{1}}^{t_{1}},\mathfrak{A}_{s_{2}}^{t_{2}})roman_qinf ( fraktur_A start_POSTSUBSCRIPT italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT , fraktur_A start_POSTSUBSCRIPT italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ) consists of ๐”„sฯ„2โข(s)superscriptsubscript๐”„๐‘ subscript๐œ2๐‘ \mathfrak{A}_{s}^{\tau_{2}(s)}fraktur_A start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_ฯ„ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_s ) end_POSTSUPERSCRIPT such that sโ‰คs1๐‘ subscript๐‘ 1s\leq s_{1}italic_s โ‰ค italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and ฯ„2โข(s)=maxโก{tโ†“,P1โข(s),tโ†“,P2โข(s)}subscript๐œ2๐‘ subscript๐‘กโ†“subscript๐‘ƒ1๐‘ subscript๐‘กโ†“subscript๐‘ƒ2๐‘ \tau_{2}(s)=\max\left\{t_{\downarrow,P_{1}}(s),t_{\downarrow,P_{2}}(s)\right\}italic_ฯ„ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_s ) = roman_max { italic_t start_POSTSUBSCRIPT โ†“ , italic_P start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_s ) , italic_t start_POSTSUBSCRIPT โ†“ , italic_P start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( italic_s ) }.

Proof.

We prove each one of the assertions by examining all points of ฮฉฮฉ\Omegaroman_ฮฉ.

We commence with (a). If s<s2๐‘ subscript๐‘ 2s<s_{2}italic_s < italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT then ๐”„s2t2โŠ„๐”„stnot-subset-ofsuperscriptsubscript๐”„subscript๐‘ 2subscript๐‘ก2superscriptsubscript๐”„๐‘ ๐‘ก\mathfrak{A}_{s_{2}}^{t_{2}}\not\subset\mathfrak{A}_{s}^{t}fraktur_A start_POSTSUBSCRIPT italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT โŠ„ fraktur_A start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT according to Theorem3.2.If sโ‰ฅs2๐‘ subscript๐‘ 2s\geq s_{2}italic_s โ‰ฅ italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT and t>ฯ„1โข(s)๐‘กsubscript๐œ1๐‘ t>\tau_{1}(s)italic_t > italic_ฯ„ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_s ), then by Theorem3.3 either ๐”„s1t1โŠ„๐”„stnot-subset-ofsuperscriptsubscript๐”„subscript๐‘ 1subscript๐‘ก1superscriptsubscript๐”„๐‘ ๐‘ก\mathfrak{A}_{s_{1}}^{t_{1}}\not\subset\mathfrak{A}_{s}^{t}fraktur_A start_POSTSUBSCRIPT italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT โŠ„ fraktur_A start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT or ๐”„s2t2โŠ„๐”„stnot-subset-ofsuperscriptsubscript๐”„subscript๐‘ 2subscript๐‘ก2superscriptsubscript๐”„๐‘ ๐‘ก\mathfrak{A}_{s_{2}}^{t_{2}}\not\subset\mathfrak{A}_{s}^{t}fraktur_A start_POSTSUBSCRIPT italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT โŠ„ fraktur_A start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT. So, ๐”„stโˆ‰qsupโข(๐”„s1t1,๐”„s2t2)superscriptsubscript๐”„๐‘ ๐‘กqsupsuperscriptsubscript๐”„subscript๐‘ 1subscript๐‘ก1superscriptsubscript๐”„subscript๐‘ 2subscript๐‘ก2\mathfrak{A}_{s}^{t}\not\in{\rm qsup}(\mathfrak{A}_{s_{1}}^{t_{1}},\mathfrak{A%}_{s_{2}}^{t_{2}})fraktur_A start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT โˆ‰ roman_qsup ( fraktur_A start_POSTSUBSCRIPT italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT , fraktur_A start_POSTSUBSCRIPT italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ).

If sโ‰ฅs2๐‘ subscript๐‘ 2s\geq s_{2}italic_s โ‰ฅ italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT and t=ฯ„1โข(s)๐‘กsubscript๐œ1๐‘ t=\tau_{1}(s)italic_t = italic_ฯ„ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_s ), then ๐”„s1t1โˆช๐”„s2t2โŠ‚๐”„sฯ„1โข(s)superscriptsubscript๐”„subscript๐‘ 1subscript๐‘ก1superscriptsubscript๐”„subscript๐‘ 2subscript๐‘ก2superscriptsubscript๐”„๐‘ subscript๐œ1๐‘ \mathfrak{A}_{s_{1}}^{t_{1}}\cup\mathfrak{A}_{s_{2}}^{t_{2}}\subset\mathfrak{A%}_{s}^{\tau_{1}(s)}fraktur_A start_POSTSUBSCRIPT italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT โˆช fraktur_A start_POSTSUBSCRIPT italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT โŠ‚ fraktur_A start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_ฯ„ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_s ) end_POSTSUPERSCRIPT by Lemma3.1 and Theorem3.3.On the other hand, it follows from the above explanation that there is no ๐”„โˆ—โˆˆ๐”„subscript๐”„๐”„\mathfrak{A}_{*}\in\mathfrak{A}fraktur_A start_POSTSUBSCRIPT โˆ— end_POSTSUBSCRIPT โˆˆ fraktur_A such that ๐”„s1t1โˆช๐”„s2t2โŠ‚๐”„โˆ—โŠŠ๐”„stsuperscriptsubscript๐”„subscript๐‘ 1subscript๐‘ก1superscriptsubscript๐”„subscript๐‘ 2subscript๐‘ก2subscript๐”„superscriptsubscript๐”„๐‘ ๐‘ก\mathfrak{A}_{s_{1}}^{t_{1}}\cup\mathfrak{A}_{s_{2}}^{t_{2}}\subset\mathfrak{A%}_{*}\subsetneq\mathfrak{A}_{s}^{t}fraktur_A start_POSTSUBSCRIPT italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT โˆช fraktur_A start_POSTSUBSCRIPT italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT โŠ‚ fraktur_A start_POSTSUBSCRIPT โˆ— end_POSTSUBSCRIPT โŠŠ fraktur_A start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT. Thus ๐”„stsuperscriptsubscript๐”„๐‘ ๐‘ก\mathfrak{A}_{s}^{t}fraktur_A start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT is a quasi-supremum.

If sโ‰ฅs2๐‘ subscript๐‘ 2s\geq s_{2}italic_s โ‰ฅ italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT and t<ฯ„1โข(s)๐‘กsubscript๐œ1๐‘ t<\tau_{1}(s)italic_t < italic_ฯ„ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_s ), then ๐”„s1t1โˆช๐”„s2t2โŠ‚๐”„sฯ„1โข(s)โŠŠ๐”„stsuperscriptsubscript๐”„subscript๐‘ 1subscript๐‘ก1superscriptsubscript๐”„subscript๐‘ 2subscript๐‘ก2superscriptsubscript๐”„๐‘ subscript๐œ1๐‘ superscriptsubscript๐”„๐‘ ๐‘ก\mathfrak{A}_{s_{1}}^{t_{1}}\cup\mathfrak{A}_{s_{2}}^{t_{2}}\subset\mathfrak{A%}_{s}^{\tau_{1}(s)}\subsetneq\mathfrak{A}_{s}^{t}fraktur_A start_POSTSUBSCRIPT italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT โˆช fraktur_A start_POSTSUBSCRIPT italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT โŠ‚ fraktur_A start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_ฯ„ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_s ) end_POSTSUPERSCRIPT โŠŠ fraktur_A start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT by Lemma3.1 and Theorem3.3. Hence, ๐”„stโˆ‰qsupโข(๐”„s1t1,๐”„s2t2)superscriptsubscript๐”„๐‘ ๐‘กqsupsuperscriptsubscript๐”„subscript๐‘ 1subscript๐‘ก1superscriptsubscript๐”„subscript๐‘ 2subscript๐‘ก2\mathfrak{A}_{s}^{t}\not\in{\rm qsup}(\mathfrak{A}_{s_{1}}^{t_{1}},\mathfrak{A%}_{s_{2}}^{t_{2}})fraktur_A start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT โˆ‰ roman_qsup ( fraktur_A start_POSTSUBSCRIPT italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT , fraktur_A start_POSTSUBSCRIPT italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ). Assertion (a) is proven.

Similarly to the above, if s>s1๐‘ subscript๐‘ 1s>s_{1}italic_s > italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT then ๐”„stโŠ„๐”„s1t1not-subset-ofsuperscriptsubscript๐”„๐‘ ๐‘กsuperscriptsubscript๐”„subscript๐‘ 1subscript๐‘ก1\mathfrak{A}_{s}^{t}\not\subset\mathfrak{A}_{s_{1}}^{t_{1}}fraktur_A start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT โŠ„ fraktur_A start_POSTSUBSCRIPT italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT according to Theorem3.2. If sโ‰คs1๐‘ subscript๐‘ 1s\leq s_{1}italic_s โ‰ค italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and t<ฯ„2โข(s)๐‘กsubscript๐œ2๐‘ t<\tau_{2}(s)italic_t < italic_ฯ„ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_s ), then either ๐”„stโŠ„๐”„s1t1not-subset-ofsuperscriptsubscript๐”„๐‘ ๐‘กsuperscriptsubscript๐”„subscript๐‘ 1subscript๐‘ก1\mathfrak{A}_{s}^{t}\not\subset\mathfrak{A}_{s_{1}}^{t_{1}}fraktur_A start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT โŠ„ fraktur_A start_POSTSUBSCRIPT italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT or ๐”„stโŠ„๐”„s2t2not-subset-ofsuperscriptsubscript๐”„๐‘ ๐‘กsuperscriptsubscript๐”„subscript๐‘ 2subscript๐‘ก2\mathfrak{A}_{s}^{t}\not\subset\mathfrak{A}_{s_{2}}^{t_{2}}fraktur_A start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT โŠ„ fraktur_A start_POSTSUBSCRIPT italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT by Theorem3.3. So, ๐”„stโˆ‰qinfโข(๐”„s1t1,๐”„s2t2)superscriptsubscript๐”„๐‘ ๐‘กqinfsuperscriptsubscript๐”„subscript๐‘ 1subscript๐‘ก1superscriptsubscript๐”„subscript๐‘ 2subscript๐‘ก2\mathfrak{A}_{s}^{t}\not\in{\rm qinf}(\mathfrak{A}_{s_{1}}^{t_{1}},\mathfrak{A%}_{s_{2}}^{t_{2}})fraktur_A start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT โˆ‰ roman_qinf ( fraktur_A start_POSTSUBSCRIPT italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT , fraktur_A start_POSTSUBSCRIPT italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ).

If sโ‰คs1๐‘ subscript๐‘ 1s\leq s_{1}italic_s โ‰ค italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and t=ฯ„2โข(s)๐‘กsubscript๐œ2๐‘ t=\tau_{2}(s)italic_t = italic_ฯ„ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_s ), then ๐”„sฯ„2โข(s)โŠ‚๐”„s1t1โˆฉ๐”„s2t2superscriptsubscript๐”„๐‘ subscript๐œ2๐‘ superscriptsubscript๐”„subscript๐‘ 1subscript๐‘ก1superscriptsubscript๐”„subscript๐‘ 2subscript๐‘ก2\mathfrak{A}_{s}^{\tau_{2}(s)}\subset\mathfrak{A}_{s_{1}}^{t_{1}}\cap\mathfrak%{A}_{s_{2}}^{t_{2}}fraktur_A start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_ฯ„ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_s ) end_POSTSUPERSCRIPT โŠ‚ fraktur_A start_POSTSUBSCRIPT italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT โˆฉ fraktur_A start_POSTSUBSCRIPT italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT by Lemma3.1 and Theorem3.3.In addition, there is no ๐”„โˆ—โˆˆ๐”„subscript๐”„๐”„\mathfrak{A}_{*}\in\mathfrak{A}fraktur_A start_POSTSUBSCRIPT โˆ— end_POSTSUBSCRIPT โˆˆ fraktur_A such that ๐”„stโŠŠ๐”„โˆ—โŠ‚๐”„s1t1โˆฉ๐”„s2t2superscriptsubscript๐”„๐‘ ๐‘กsubscript๐”„superscriptsubscript๐”„subscript๐‘ 1subscript๐‘ก1superscriptsubscript๐”„subscript๐‘ 2subscript๐‘ก2\mathfrak{A}_{s}^{t}\subsetneq\mathfrak{A}_{*}\subset\mathfrak{A}_{s_{1}}^{t_{%1}}\cap\mathfrak{A}_{s_{2}}^{t_{2}}fraktur_A start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT โŠŠ fraktur_A start_POSTSUBSCRIPT โˆ— end_POSTSUBSCRIPT โŠ‚ fraktur_A start_POSTSUBSCRIPT italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT โˆฉ fraktur_A start_POSTSUBSCRIPT italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT. Thus ๐”„stsuperscriptsubscript๐”„๐‘ ๐‘ก\mathfrak{A}_{s}^{t}fraktur_A start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT is a quasi-infimum.

If sโ‰คs1๐‘ subscript๐‘ 1s\leq s_{1}italic_s โ‰ค italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and t>ฯ„2โข(s)๐‘กsubscript๐œ2๐‘ t>\tau_{2}(s)italic_t > italic_ฯ„ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_s ), then ๐”„stโŠŠ๐”„sฯ„2โข(s)โŠ‚๐”„s1t1โˆฉ๐”„s2t2superscriptsubscript๐”„๐‘ ๐‘กsuperscriptsubscript๐”„๐‘ subscript๐œ2๐‘ superscriptsubscript๐”„subscript๐‘ 1subscript๐‘ก1superscriptsubscript๐”„subscript๐‘ 2subscript๐‘ก2\mathfrak{A}_{s}^{t}\subsetneq\mathfrak{A}_{s}^{\tau_{2}(s)}\subset\mathfrak{A%}_{s_{1}}^{t_{1}}\cap\mathfrak{A}_{s_{2}}^{t_{2}}fraktur_A start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT โŠŠ fraktur_A start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_ฯ„ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_s ) end_POSTSUPERSCRIPT โŠ‚ fraktur_A start_POSTSUBSCRIPT italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT โˆฉ fraktur_A start_POSTSUBSCRIPT italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT by Lemma3.1 and Theorem3.3. Hence, ๐”„stโˆ‰qinfโข(๐”„s1t1,๐”„s2t2)superscriptsubscript๐”„๐‘ ๐‘กqinfsuperscriptsubscript๐”„subscript๐‘ 1subscript๐‘ก1superscriptsubscript๐”„subscript๐‘ 2subscript๐‘ก2\mathfrak{A}_{s}^{t}\not\in{\rm qinf}(\mathfrak{A}_{s_{1}}^{t_{1}},\mathfrak{A%}_{s_{2}}^{t_{2}})fraktur_A start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT โˆ‰ roman_qinf ( fraktur_A start_POSTSUBSCRIPT italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT , fraktur_A start_POSTSUBSCRIPT italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT )โˆŽ

Observe that if a pair ๐”„1,๐”„2subscript๐”„1subscript๐”„2\mathfrak{A}_{1},\mathfrak{A}_{2}fraktur_A start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , fraktur_A start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT has the supremum, then by definition supโข(๐”„1,๐”„2)โŠ‚qsupโข(๐”„1,๐”„2)supsubscript๐”„1subscript๐”„2qsupsubscript๐”„1subscript๐”„2{\rm sup}(\mathfrak{A}_{1},\mathfrak{A}_{2})\subset{\rm qsup}(\mathfrak{A}_{1}%,\mathfrak{A}_{2})roman_sup ( fraktur_A start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , fraktur_A start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) โŠ‚ roman_qsup ( fraktur_A start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , fraktur_A start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ). On the other hand, Definition4.3 implies that the relation supโข(๐”„1,๐”„2)โŠŠqsupโข(๐”„1,๐”„2)supsubscript๐”„1subscript๐”„2qsupsubscript๐”„1subscript๐”„2{\rm sup}(\mathfrak{A}_{1},\mathfrak{A}_{2})\subsetneq{\rm qsup}(\mathfrak{A}_%{1},\mathfrak{A}_{2})roman_sup ( fraktur_A start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , fraktur_A start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) โŠŠ roman_qsup ( fraktur_A start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , fraktur_A start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) is impossible. So, the quasi-supremum coincides with the supremum, in particular, it is unique.Since not for all pairs ๐”„s1t1,๐”„s2t2superscriptsubscript๐”„subscript๐‘ 1subscript๐‘ก1superscriptsubscript๐”„subscript๐‘ 2subscript๐‘ก2\mathfrak{A}_{s_{1}}^{t_{1}},\mathfrak{A}_{s_{2}}^{t_{2}}fraktur_A start_POSTSUBSCRIPT italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT , fraktur_A start_POSTSUBSCRIPT italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT the sets qsupโข(๐”„s1t1,๐”„s2t2)qsupsuperscriptsubscript๐”„subscript๐‘ 1subscript๐‘ก1superscriptsubscript๐”„subscript๐‘ 2subscript๐‘ก2{\rm qsup}(\mathfrak{A}_{s_{1}}^{t_{1}},\mathfrak{A}_{s_{2}}^{t_{2}})roman_qsup ( fraktur_A start_POSTSUBSCRIPT italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT , fraktur_A start_POSTSUBSCRIPT italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ) and qinfโข(๐”„s1t1,๐”„s2t2)qinfsuperscriptsubscript๐”„subscript๐‘ 1subscript๐‘ก1superscriptsubscript๐”„subscript๐‘ 2subscript๐‘ก2{\rm qinf}(\mathfrak{A}_{s_{1}}^{t_{1}},\mathfrak{A}_{s_{2}}^{t_{2}})roman_qinf ( fraktur_A start_POSTSUBSCRIPT italic_s start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT , fraktur_A start_POSTSUBSCRIPT italic_s start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ) are singletons, we have:

Corollary 4.5.

The family ๐”„:={๐”„st:(s,t)โˆˆฮฉยฏ}assign๐”„conditional-setsuperscriptsubscript๐”„๐‘ ๐‘ก๐‘ ๐‘กยฏฮฉ\mathfrak{A}:=\left\{\mathfrak{A}_{s}^{t}:(s,t)\in\overline{\Omega}\right\}fraktur_A := { fraktur_A start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT : ( italic_s , italic_t ) โˆˆ overยฏ start_ARG roman_ฮฉ end_ARG } is not a lattice.

5. Upcoming questions

In the preceding sections, we introduced an approach for establishing set-theoretic properties of a family of sets consisting of holomorphic functions. We demonstrated the effectiveness of this method with a significant example involving sets defined by (3.1). Furthermore, it turns out that this approach relies on previously established characteristics of the hypergeometric function. For this reason, it appears imperative that prior to effectively disseminating this approach, one should address the following question:

Question 1.

Expand Theorem2.4 to the case of F12โข(1,s;s+1;x)subscriptsubscript๐น121๐‘ ๐‘ 1๐‘ฅ{{}_{2}F_{1}}(1,s;s+1;x)start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT italic_F start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( 1 , italic_s ; italic_s + 1 ; italic_x ), xโˆˆ[โˆ’1,1]๐‘ฅ11x\in[-1,1]italic_x โˆˆ [ - 1 , 1 ], or a more general hypergeometric function F12โข(m,s;s+n;x)subscriptsubscript๐น12๐‘š๐‘ ๐‘ ๐‘›๐‘ฅ{{}_{2}F_{1}}(m,s;s+n;x)start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT italic_F start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_m , italic_s ; italic_s + italic_n ; italic_x ) instead of F12โข(1,s;s+1;โˆ’1)subscriptsubscript๐น121๐‘ ๐‘ 11{{}_{2}F_{1}}(1,s;s+1;-1)start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT italic_F start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( 1 , italic_s ; italic_s + 1 ; - 1 ).

An additional family that can be explored using the presented approach consists of the sets

๐”…st:={fโˆˆ๐’œ:|(sโˆ’1)โขfโข(z)z+fโ€ฒโข(z)โˆ’s|โ‰คt1โˆ’t,zโˆˆ๐”ปโˆ–{0}},(s,t)โˆˆฮฉยฏ.formulae-sequenceassignsuperscriptsubscript๐”…๐‘ ๐‘กconditional-set๐‘“๐’œformulae-sequence๐‘ 1๐‘“๐‘ง๐‘งsuperscript๐‘“โ€ฒ๐‘ง๐‘ ๐‘ก1๐‘ก๐‘ง๐”ป0๐‘ ๐‘กยฏฮฉ\mathfrak{B}_{s}^{t}:=\left\{f\in\mathcal{A}:\ \left|(s-1)\frac{f(z)}{z}+f^{%\prime}(z)-s\right|\leq\frac{t}{1-t},\ z\in\mathbb{D}\setminus\{0\}\right\},%\quad(s,t)\in\overline{\Omega}.fraktur_B start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT := { italic_f โˆˆ caligraphic_A : | ( italic_s - 1 ) divide start_ARG italic_f ( italic_z ) end_ARG start_ARG italic_z end_ARG + italic_f start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT ( italic_z ) - italic_s | โ‰ค divide start_ARG italic_t end_ARG start_ARG 1 - italic_t end_ARG , italic_z โˆˆ blackboard_D โˆ– { 0 } } , ( italic_s , italic_t ) โˆˆ overยฏ start_ARG roman_ฮฉ end_ARG .

These sets were studied in [14] within the context of geometric function theory. A recent investigation delved into the specific case where t1โˆ’t=1+s๐‘ก1๐‘ก1๐‘ \frac{t}{1-t}=1+sdivide start_ARG italic_t end_ARG start_ARG 1 - italic_t end_ARG = 1 + italic_s, addressing problems in filtration theory in [4] and [5]. We now pose the following questions:

Question 2.

What conditions on a function T๐‘‡Titalic_T provide that the one-parameter family {๐”…sTโข(s)}superscriptsubscript๐”…๐‘ ๐‘‡๐‘ \left\{\mathfrak{B}_{s}^{T(s)}\right\}{ fraktur_B start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T ( italic_s ) end_POSTSUPERSCRIPT } forms a filtration?

Question 3.

Is the family ๐”…:={๐”…st,(s,t)โˆˆฮฉ}assign๐”…superscriptsubscript๐”…๐‘ ๐‘ก๐‘ ๐‘กฮฉ\mathfrak{B}:=\left\{\mathfrak{B}_{s}^{t},\ (s,t)\in\Omega\right\}fraktur_B := { fraktur_B start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT , ( italic_s , italic_t ) โˆˆ roman_ฮฉ } a lattice?

In the case of affirmative answer, the method of finding of the unique supremum and infimum for each pair of sets should be established. Otherwise, one asks about the sets of quasi-suprema and quasi-infima.

As for a general situation, we have already shown at the end of the previous section that if each pairs of elements of a family has the unique supremum (infimum), then the set of all quasi-suprema (quasi-infima) is a singleton. We do not know whether the converse statement is valid in general. At the same time, known examples lead us to the following

Conjecture A.

A partially ordered family is a lattice if and only if each pair of its elements has a unique quasi-supremum and a unique quasi-minimum.

Appendix

Here we prove Lemma2.1 that states that the equation ฯˆ1โข(x)=ฯˆ2โข(x)subscript๐œ“1๐‘ฅsubscript๐œ“2๐‘ฅ\psi_{1}(x)=\psi_{2}(x)italic_ฯˆ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_x ) = italic_ฯˆ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_x ), where

ฯˆ1โข(x):=2โข(1+x)x2โขlogโก(1+x24โข(1+x)),ฯˆ2โข(x):=2+x+(1+x)โขlogโก(1+x)(2+x)2,formulae-sequenceassignsubscript๐œ“1๐‘ฅ21๐‘ฅsuperscript๐‘ฅ21superscript๐‘ฅ241๐‘ฅassignsubscript๐œ“2๐‘ฅ2๐‘ฅ1๐‘ฅ1๐‘ฅsuperscript2๐‘ฅ2\psi_{1}(x):=\frac{2(1+x)}{x^{2}}\,\log\left(1+\frac{x^{2}}{4(1+x)}\right),%\quad\psi_{2}(x):=\frac{2+x+(1+x)\log(1+x)}{(2+x)^{2}},italic_ฯˆ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_x ) := divide start_ARG 2 ( 1 + italic_x ) end_ARG start_ARG italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG roman_log ( 1 + divide start_ARG italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 4 ( 1 + italic_x ) end_ARG ) , italic_ฯˆ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_x ) := divide start_ARG 2 + italic_x + ( 1 + italic_x ) roman_log ( 1 + italic_x ) end_ARG start_ARG ( 2 + italic_x ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ,

has a unique solution in (0,โˆž)0(0,\infty)( 0 , โˆž ).

Proof.

Our plan is the following: first we show that this equation has no solution for โ€˜smallโ€™ x๐‘ฅxitalic_x. Then we show that there is a unique solution for โ€˜largeโ€™ x๐‘ฅxitalic_x. In the last step we complete the proof.

Step 1. The inequality

ฮถโˆ’ฮถ22+ฮถ33โˆ’ฮถ44<logโก(1+ฮถ)<ฮถโˆ’ฮถ22+ฮถ33,ฮถ>0,formulae-sequence๐œsuperscript๐œ22superscript๐œ33superscript๐œ441๐œ๐œsuperscript๐œ22superscript๐œ33๐œ0\zeta-\frac{\zeta^{2}}{2}+\frac{\zeta^{3}}{3}-\frac{\zeta^{4}}{4}<\log(1+\zeta%)<\zeta-\frac{\zeta^{2}}{2}+\frac{\zeta^{3}}{3},\quad\zeta>0,italic_ฮถ - divide start_ARG italic_ฮถ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 2 end_ARG + divide start_ARG italic_ฮถ start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG start_ARG 3 end_ARG - divide start_ARG italic_ฮถ start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT end_ARG start_ARG 4 end_ARG < roman_log ( 1 + italic_ฮถ ) < italic_ฮถ - divide start_ARG italic_ฮถ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 2 end_ARG + divide start_ARG italic_ฮถ start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG start_ARG 3 end_ARG , italic_ฮถ > 0 ,

implies

ฯˆ1โข(x)subscript๐œ“1๐‘ฅ\displaystyle\psi_{1}(x)italic_ฯˆ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_x )<\displaystyle<<12โˆ’x216โข(1+x)+x66โ‹…16โข(1+x)212superscript๐‘ฅ2161๐‘ฅsuperscript๐‘ฅ6โ‹…616superscript1๐‘ฅ2\displaystyle\frac{1}{2}-\frac{x^{2}}{16(1+x)}+\frac{x^{6}}{6\cdot 16(1+x)^{2}}divide start_ARG 1 end_ARG start_ARG 2 end_ARG - divide start_ARG italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 16 ( 1 + italic_x ) end_ARG + divide start_ARG italic_x start_POSTSUPERSCRIPT 6 end_POSTSUPERSCRIPT end_ARG start_ARG 6 โ‹… 16 ( 1 + italic_x ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG
=\displaystyle==12+x216โข(โˆ’11+x+x46โข(1+x)2),12superscript๐‘ฅ21611๐‘ฅsuperscript๐‘ฅ46superscript1๐‘ฅ2\displaystyle\frac{1}{2}+\frac{x^{2}}{16}\left(-\frac{1}{1+x}+\frac{x^{4}}{6(1%+x)^{2}}\right)\!,divide start_ARG 1 end_ARG start_ARG 2 end_ARG + divide start_ARG italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 16 end_ARG ( - divide start_ARG 1 end_ARG start_ARG 1 + italic_x end_ARG + divide start_ARG italic_x start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT end_ARG start_ARG 6 ( 1 + italic_x ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ) ,
ฯˆ2โข(x)subscript๐œ“2๐‘ฅ\displaystyle\psi_{2}(x)italic_ฯˆ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_x )>\displaystyle>>12+x+1+x(2+x)2โข(xโˆ’x22+x33โˆ’x44)12๐‘ฅ1๐‘ฅsuperscript2๐‘ฅ2๐‘ฅsuperscript๐‘ฅ22superscript๐‘ฅ33superscript๐‘ฅ44\displaystyle\frac{1}{2+x}+\frac{1+x}{(2+x)^{2}}\left(x-\frac{x^{2}}{2}+\frac{%x^{3}}{3}-\frac{x^{4}}{4}\right)divide start_ARG 1 end_ARG start_ARG 2 + italic_x end_ARG + divide start_ARG 1 + italic_x end_ARG start_ARG ( 2 + italic_x ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ( italic_x - divide start_ARG italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 2 end_ARG + divide start_ARG italic_x start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG start_ARG 3 end_ARG - divide start_ARG italic_x start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT end_ARG start_ARG 4 end_ARG )
=\displaystyle==12+x216โ‹…1(2+x)2โข(โˆ’8โขx3+4โขx23โˆ’4โขx3).12โ‹…superscript๐‘ฅ2161superscript2๐‘ฅ28๐‘ฅ34superscript๐‘ฅ234superscript๐‘ฅ3\displaystyle\frac{1}{2}+\frac{x^{2}}{16}\cdot\frac{1}{(2+x)^{2}}\left(-\frac{%8x}{3}+\frac{4x^{2}}{3}-4x^{3}\right)\!.divide start_ARG 1 end_ARG start_ARG 2 end_ARG + divide start_ARG italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 16 end_ARG โ‹… divide start_ARG 1 end_ARG start_ARG ( 2 + italic_x ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ( - divide start_ARG 8 italic_x end_ARG start_ARG 3 end_ARG + divide start_ARG 4 italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 3 end_ARG - 4 italic_x start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT ) .

Thus

ฯˆ2โข(x)โˆ’ฯˆ1โข(x)>x296โข(1+x)2โ‹…ฯ•โข(x),subscript๐œ“2๐‘ฅsubscript๐œ“1๐‘ฅโ‹…superscript๐‘ฅ296superscript1๐‘ฅ2italic-ฯ•๐‘ฅ\displaystyle\psi_{2}(x)-\psi_{1}(x)>\frac{x^{2}}{96(1+x)^{2}}\cdot\phi(x),italic_ฯˆ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_x ) - italic_ฯˆ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_x ) > divide start_ARG italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 96 ( 1 + italic_x ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG โ‹… italic_ฯ• ( italic_x ) ,

where ฯ•โข(x):=6+2โขx2โˆ’x4โˆ’10โขxโˆ’24โขx3assignitalic-ฯ•๐‘ฅ62superscript๐‘ฅ2superscript๐‘ฅ410๐‘ฅ24superscript๐‘ฅ3\phi(x):=6+2x^{2}-x^{4}-10x-24x^{3}italic_ฯ• ( italic_x ) := 6 + 2 italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - italic_x start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT - 10 italic_x - 24 italic_x start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT.It can be easily seen that ฯ•italic-ฯ•\phiitalic_ฯ• is a decreasing function that is positive at x=0.4๐‘ฅ0.4x=0.4italic_x = 0.4. Hence ฯˆ2โข(x)>ฯˆ1โข(x)subscript๐œ“2๐‘ฅsubscript๐œ“1๐‘ฅ\psi_{2}(x)>\psi_{1}(x)italic_ฯˆ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_x ) > italic_ฯˆ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_x ) in (0,0.4]00.4(0,0.4]( 0 , 0.4 ].

Step 2. Approximate computation gives us ฯˆ1โข(10)<0.261<0.266<ฯˆ2โข(10)subscript๐œ“1100.2610.266subscript๐œ“210\psi_{1}(10)<0.261<0.266<\psi_{2}(10)italic_ฯˆ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( 10 ) < 0.261 < 0.266 < italic_ฯˆ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( 10 ). On the other hand, limxโ†’โˆžฯˆ1โข(x)ฯˆ2โข(x)=2subscriptโ†’๐‘ฅsubscript๐œ“1๐‘ฅsubscript๐œ“2๐‘ฅ2\lim\limits_{x\to\infty}\frac{\psi_{1}(x)}{\psi_{2}(x)}=2roman_lim start_POSTSUBSCRIPT italic_x โ†’ โˆž end_POSTSUBSCRIPT divide start_ARG italic_ฯˆ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_x ) end_ARG start_ARG italic_ฯˆ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_x ) end_ARG = 2. Therefore, the equation has at least one solution in [10,โˆž)10[10,\infty)[ 10 , โˆž ).

Consider the equation 2+xlogโก(1+x)โขฯˆ1โข(x)=2+xlogโก(1+x)โขฯˆ2โข(x)2๐‘ฅ1๐‘ฅsubscript๐œ“1๐‘ฅ2๐‘ฅ1๐‘ฅsubscript๐œ“2๐‘ฅ\frac{2+x}{\log(1+x)}\psi_{1}(x)=\frac{2+x}{\log(1+x)}\psi_{2}(x)divide start_ARG 2 + italic_x end_ARG start_ARG roman_log ( 1 + italic_x ) end_ARG italic_ฯˆ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_x ) = divide start_ARG 2 + italic_x end_ARG start_ARG roman_log ( 1 + italic_x ) end_ARG italic_ฯˆ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_x ), which is equivalent to the given one. We state that the function in the left-hand side is increasing, while one in the right-hand side is decreasing. Indeed, it can be easily checked that (2+xlogโก(1+x)โขฯˆ2โข(x))โ€ฒ<0superscript2๐‘ฅ1๐‘ฅsubscript๐œ“2๐‘ฅโ€ฒ0\left(\frac{2+x}{\log(1+x)}\psi_{2}(x)\right)^{\prime}<0( divide start_ARG 2 + italic_x end_ARG start_ARG roman_log ( 1 + italic_x ) end_ARG italic_ฯˆ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_x ) ) start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT < 0.The differentiation shows that the inequality (2+xlogโก(1+x)โขฯˆ1โข(x))โ€ฒ>0superscript2๐‘ฅ1๐‘ฅsubscript๐œ“1๐‘ฅโ€ฒ0\left(\frac{2+x}{\log(1+x)}\psi_{1}(x)\right)^{\prime}>0( divide start_ARG 2 + italic_x end_ARG start_ARG roman_log ( 1 + italic_x ) end_ARG italic_ฯˆ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_x ) ) start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT > 0 is equivalentto

[2โขx2+2โขx+(3โขx+4)โขlogโก(1+x)]โขlogโก1+x1+x2>[2โขx+(3โขx+4)โขlogโก(1+x)]โขlogโก(1+x2).delimited-[]2superscript๐‘ฅ22๐‘ฅ3๐‘ฅ41๐‘ฅ1๐‘ฅ1๐‘ฅ2delimited-[]2๐‘ฅ3๐‘ฅ41๐‘ฅ1๐‘ฅ2\left[2x^{2}+2x+(3x+4)\log(1+x)\right]\log\frac{1+x}{1+\frac{x}{2}}>\left[2x+(%3x+4)\log(1+x)\right]\log\left(1+\frac{x}{2}\right)\!.[ 2 italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + 2 italic_x + ( 3 italic_x + 4 ) roman_log ( 1 + italic_x ) ] roman_log divide start_ARG 1 + italic_x end_ARG start_ARG 1 + divide start_ARG italic_x end_ARG start_ARG 2 end_ARG end_ARG > [ 2 italic_x + ( 3 italic_x + 4 ) roman_log ( 1 + italic_x ) ] roman_log ( 1 + divide start_ARG italic_x end_ARG start_ARG 2 end_ARG ) .

If x>10๐‘ฅ10x>10italic_x > 10, then logโก1+x1+x2>0.6061๐‘ฅ1๐‘ฅ20.606\log\frac{1+x}{1+\frac{x}{2}}>0.606roman_log divide start_ARG 1 + italic_x end_ARG start_ARG 1 + divide start_ARG italic_x end_ARG start_ARG 2 end_ARG end_ARG > 0.606. So, in this case it is enough to show that

1.212โขx2>[2โขx2+2โขx+(3โขx+4)โขlogโก(1+x)]โขlogโก6+3โขx11.1.212superscript๐‘ฅ2delimited-[]2superscript๐‘ฅ22๐‘ฅ3๐‘ฅ41๐‘ฅ63๐‘ฅ111.212x^{2}>\left[2x^{2}+2x+(3x+4)\log(1+x)\right]\log\frac{6+3x}{11}.1.212 italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT > [ 2 italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + 2 italic_x + ( 3 italic_x + 4 ) roman_log ( 1 + italic_x ) ] roman_log divide start_ARG 6 + 3 italic_x end_ARG start_ARG 11 end_ARG .

The last inequality follows from elementary calculus. Thus the equation ฯˆ1โข(x)=ฯˆ2โข(x)subscript๐œ“1๐‘ฅsubscript๐œ“2๐‘ฅ\psi_{1}(x)=\psi_{2}(x)italic_ฯˆ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_x ) = italic_ฯˆ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_x ) has exactly one root in x>10๐‘ฅ10x>10italic_x > 10.

Step 3. To complete the proof, we have to show that there is no solution in [0.4,10]0.410[0.4,10][ 0.4 , 10 ]. Note that both ฯˆ1subscript๐œ“1\psi_{1}italic_ฯˆ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and ฯˆ2subscript๐œ“2\psi_{2}italic_ฯˆ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT can be analytically extended to the right half-plane. Hence one can find the number of solutions using the logarithmic residue of the function ฯˆ1โข(z)โˆ’ฯˆ2โข(z)subscript๐œ“1๐‘งsubscript๐œ“2๐‘ง\psi_{1}(z)-\psi_{2}(z)italic_ฯˆ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_z ) - italic_ฯˆ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_z ) on the boundary of (for instance) the rectangle ฮฉ={z=x+iโขy: 0.4โ‰คxโ‰ค10,|y|โ‰ค2}ฮฉconditional-set๐‘ง๐‘ฅ๐‘–๐‘ฆformulae-sequence0.4๐‘ฅ10๐‘ฆ2\Omega=\left\{z=x+iy:\ 0.4\leq x\leq 10,\ |y|\leq 2\right\}roman_ฮฉ = { italic_z = italic_x + italic_i italic_y : 0.4 โ‰ค italic_x โ‰ค 10 , | italic_y | โ‰ค 2 }.

The approximate computation using Maple gives

12โขฯ€โขiโขโˆฎโˆ‚Dฯˆ1โ€ฒโข(z)โˆ’ฯˆ2โ€ฒโข(z)ฯˆ1โข(z)โˆ’ฯˆ2โข(z)โข๐‘‘zโ‰ˆโˆ’1โ‹…10โˆ’10+0โขi.12๐œ‹๐‘–subscriptcontour-integral๐ทsuperscriptsubscript๐œ“1โ€ฒ๐‘งsuperscriptsubscript๐œ“2โ€ฒ๐‘งsubscript๐œ“1๐‘งsubscript๐œ“2๐‘งdifferential-d๐‘งโ‹…1superscript10100๐‘–\frac{1}{2\pi i}\oint_{\partial D}\frac{\psi_{1}^{\prime}(z)-\psi_{2}^{\prime}%(z)}{\psi_{1}(z)-\psi_{2}(z)}dz\approx-1\cdot 10^{-10}+0i.divide start_ARG 1 end_ARG start_ARG 2 italic_ฯ€ italic_i end_ARG โˆฎ start_POSTSUBSCRIPT โˆ‚ italic_D end_POSTSUBSCRIPT divide start_ARG italic_ฯˆ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT ( italic_z ) - italic_ฯˆ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT โ€ฒ end_POSTSUPERSCRIPT ( italic_z ) end_ARG start_ARG italic_ฯˆ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_z ) - italic_ฯˆ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_z ) end_ARG italic_d italic_z โ‰ˆ - 1 โ‹… 10 start_POSTSUPERSCRIPT - 10 end_POSTSUPERSCRIPT + 0 italic_i .

Since the logarithmic residue should be an integer, we conclude that it is zero, that is, there is no solution in [0.4,10]0.410[0.4,10][ 0.4 , 10 ]. The proof is complete.โˆŽ

Acknowledgement

The authors are grateful to Guy Katriel for very helpful discussions.

Declarations

Data availability This manuscript has no associated data.

Conflict of interest The authors declare that they have no Conflict of interest.

Ethical approval Not applicable.

Financial interests The authors have no relevant financial or non-financial interests to disclose.

References

  • [1] R. Balasubramanian, S. Ponnusamy and M. Vuorinen, On hypergeometric functionsand function spaces, J. Comput. Appl. Math. 139(2) (2002), 299โ€“322.
  • [2] F. Bracci, M. D. Contreras, S. Dรญaz-Madrigal, M. Elin and D. Shoikhet,Filtrations of infinitesimal generators, Funct. Approx. Comment. Math. 59 (2018), 99โ€“115.
  • [3] A. Dyachenko and D. Karp,Ratios of the Gauss hypergeometric functions with parameters shifted by integers: more on integral representations, Lobachevskii J. Math. 42 (2021), 2764โ€“2776.
  • [4] M. Elin and F. Jacobzon,Survey on filtrations (parametric embeddings) of infinitesimal generators, Journ. Analysis, DOI 10.1007/s41478-024-00754-z.
  • [5] M.Elin, F. Jacobzon and D. Shoikhet,Filtration families of semigroup generators. The Fekete-Szegรถ problem, Appl. Set-Valued Anal. Optim. 6 (2024) 13โ€“29.
  • [6] M. Elin, D. Shoikhet and T. Sugawa,Filtration of semi-complete vector fields revisited, in: Complex analysis and dynamical systems. New trends and open problems, 93โ€“102, Trends in Math., Birkhรคuser/Springer, Cham, 2018.
  • [7] A.W. Goodman,Univalent functions, Vol 1, Mariner publishing company, Inc., 1983.
  • [8] D. J. Hallenbeck, Convex hulls and extreme points of some families of univalent functions, Trans. Amer. Math. Soc. 192 (1974), 285โ€“292.
  • [9] P. Hariri, R. Klรฉn, and M. Vuorinen,Conformally Invariant Metrics and Quasiconformal Mappings, Springer Monographs in Mathematics, Springer, Cham, 2020.
  • [10] D. Karp and A. Kuznetsov,A new identity for the sum of products of the generalized hypergeometric functions, Proc. Amer. Math. Soc. 149 (2021), 2861โ€“2870.
  • [11] Y. C. Kim and R. Rรธnning, Integral transforms of certain subclasses of analytic functions, J. Math. Anal. Appl. 258 (2001), 466โ€“486.
  • [12] M. Obradoviฤ‡ and S. Ponnusamy,Univalence and starlikeness of certain transforms defined by convolution of analytic functions, Journ. Math. Anal. Appl. 336 (2007), 758โ€“767.
  • [13] T.Sugawa and L.-M. Wang, Geometric properties of the shifted hypergeometric functions, Complex Anal. Oper. Theory 11 (2017), 1879โ€“1893, https://doi.org/10.1007/s11785-017-0674-4.
  • [14] N. Tuneski,Some simple sufficient conditions for starlikeness and convexity, Appl. Math. Letters 22 (2009), 693โ€“697.
  • [15] L.-M. Wang, Mapping properties of the zero-balanced hypergeometric functions, Journ. Math. Anal. Appl. 505 (2022), 125448, https://doi.org/10.1016/j.jmaa.2021.125448.
On the hypergeometric function and families of holomorphic functions (2024)
Top Articles
Latest Posts
Article information

Author: Msgr. Benton Quitzon

Last Updated:

Views: 6661

Rating: 4.2 / 5 (43 voted)

Reviews: 90% of readers found this page helpful

Author information

Name: Msgr. Benton Quitzon

Birthday: 2001-08-13

Address: 96487 Kris Cliff, Teresiafurt, WI 95201

Phone: +9418513585781

Job: Senior Designer

Hobby: Calligraphy, Rowing, Vacation, Geocaching, Web surfing, Electronics, Electronics

Introduction: My name is Msgr. Benton Quitzon, I am a comfortable, charming, thankful, happy, adventurous, handsome, precious person who loves writing and wants to share my knowledge and understanding with you.